Download presentation

Presentation is loading. Please wait.

Published byMya Broadway Modified over 3 years ago

1
Significance Testing

2
A statistical method that uses sample data to evaluate a hypothesis about a population 1. State a hypothesis 2. Use the hypothesis to predict the characteristics the sample should have 3. Obtain a random sample from the population 4. Compare the obtained sample data with the prediction made from the hypothesis

3
Suggests that the difference or relationship is systematic and not due to chance A significance level gives the risk that the effect is due to chance At p <.05, there is about a 5% (5/100) chance that an effect just happened in a normal distribution and is not related to any other variable

4
p <.05 for 2-tailed occurs at z = 1.96

5
Difference in size between the sample mean and the original population mean The variability of scores The number of scores in the sample

6
We make certain assumptions about the impact of the methods used to obtain the data sample Random sampling ◦ That the sample represents the population Independent observations ◦ The first measurement has no relationship to the probability of the second measurement The value of variability is unchanged by the treatment ◦ In most hypothesis-testing situations, we do not have the “original” population variability A normal distribution

7
Researchers can never be sure that their hypothesis is “true” ◦ Sample may not perfectly reflect the population ◦ Other influences (confounds) may cause the results ◦ It just might be one of those few chances These concerns are lessened every time that a finding is replicated

8
The null is rejected, but there really is no effect (Type I error) Or fail to reject the null (accept null), but there really is an effect (Type II error)

9
Never know the truth about the null hypothesis The likelihood of a Type I error is defined by the level of significance ◦ p <.05 means there is a 5% chance of rejecting the null when the null is true (conclude there is a difference when there is none) Type II error is related to power and sample size

10
Rather than rely on hypothesis testing, it is now typical to include effect sizes ◦ Most hypothesis tests simply state that a finding is UNLIKELY (or not) ◦ Significance does not mean it’s important ◦ Effect sizes give a way to capture the SIZE of an effect and make stronger statements about the relationship ◦ This also sidesteps issues of power Power is strongly linked to sample size and therefore effects may be underestimated in small samples and overestimated in large samples

11
Studies may show significant differences but the differences may not be meaningful ◦ Small differences in large samples ◦ Small differences that come with a large cost Studies may not show significance but the differences may be meaningful ◦ Small differences in small samples ◦ Small differences that come with a big benefit and little cost

12
Inferences made about the population based on a sample Which test determined by ◦ Continuous vs. categorical variables ◦ Number of variables ◦ Whether variables vary between subjects or within subjects *Your book has a useful chart

13
1. State the null and research hypotheses 2. Set the level of risk (usually.05) 3. Select the appropriate test statistic 4. Compute the test statistic 5. Determine the critical value for rejection of the null 6. Determine whether the statistic exceeds the critical value (usually at p <.05) 7&8. If over the critical value, the null hypothesis is unlikely THEREFORE effect must be due to other variable If not over the critical value, the null is accepted INTERPRET

14
One-sample z-tests are inferential statistics that allow you to compare a mean from a sample to the average of a population.

15
1. State hypotheses ◦ Null hypothesis: there is no difference between civic engagement in Texas A&M students and the national average H 0 : X A&M = μ students ◦ Research hypothesis: there is a difference between civic engagement at A&M and the national average H 1 : X A&M ≠ μ students

16
Z = X – μ SEM X = mean of sample μ = population average SEM = standard error of the mean SEM = σ/square root of n σ = standard deviation for the population n = size of the sample

17
Civic engagement of A&M students ◦ X = 3.42 organizations, n = 200 ◦ μ = 1.5 organizations, σ = 1.2

18
Civic engagement of A&M students ◦ X = 3.42 organizations, n = 200 ◦ μ = 1.5 organizations, σ = 1.2 ◦ SEM = σ/square root of n

19
5. Determine the critical value for rejection of the null We know that a z of 1.96 or larger is significant at p <.05 Remember this is the smallest value of z that corresponds to a p of.05 or less (falls in the “extreme range” Bigger zs = more likely to be a significant difference

20
6. Determine whether the statistic exceeds the critical value ◦ 24 > 1.96 ◦ So it does exceed the critical value ◦ THE NULL IS REJECTED IF OUR STATISTIC IS BIGGER THAN THE CRITICAL VALUE – THAT MEANS THE DIFFERENCE IS SIGNIFICANT AT p <.05!! 7. If not over the critical value, fail to reject the null

21
In results ◦ Student participants at Texas A&M University joined more civic organizations per year (M = 3.42) than the national average, z = 24.00, p <.05.

Similar presentations

Presentation is loading. Please wait....

OK

Chapter 10: Introduction to Statistical Inference.

Chapter 10: Introduction to Statistical Inference.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google