Presentation is loading. Please wait.

Presentation is loading. Please wait.

Can we reliably forecast individual 3G usage data? An analysis using mathematical simulation of time series algorithms Cosmo Zheng.

Similar presentations


Presentation on theme: "Can we reliably forecast individual 3G usage data? An analysis using mathematical simulation of time series algorithms Cosmo Zheng."— Presentation transcript:

1 Can we reliably forecast individual 3G usage data? An analysis using mathematical simulation of time series algorithms Cosmo Zheng

2 Background Fluctuations in daily demand for bandwidth make ordinary usage pricing inefficient Solution: Time- dependent pricing to persuade users to defer usage

3 Our Problem Users must be informed of expected future prices, to assess the costs of deferring usage We need a reliable way to predict future usage based on past data nology.html

4 The Algorithms Nonlinear regression – generate a fitted function of the form D + A*sin(2πt/24) + B*sin(2πt/12) + C*sin(2πt/6) Use fitted function to extrapolate

5 Algorithms (cont.) Time series decomposition – isolate trend, seasonal, and residual components Extend trend and seasonal components into the future

6 Algorithms (cont.) Exponential smoothing – generate {S t } based on a weighted average of previous data Simplest form is S 1 = X 0, S t = αX t-1 + (1-α)S t-1 for t>1, where α is a smoothing factor

7 The Data Use simulated datasets, representing usage each hour over 5 days {X t } for 1 <= t <= 120 First 4 days are historical data (training set), 5 th day is the test set

8 Algorithm 1: Regression

9 Regression (cont.) R 2 = 0.424

10 Algorithm 2: Decomposition

11 Decomposition (cont.) R 2 = 0.693

12 Algorithm 3: Smoothing

13 Smoothing (cont.) R 2 = 0.516

14 Additional Trials Trial #RegressionDecompositionSmoothing Average Trial #RegressionDecompositionSmoothing Average Sum of absolute error R2R2

15 Conclusions Time series decomposition provided most accurate prediction of future usage, followed by exponential smoothing, then regression Possible explanation: usage pattern is strongly cyclic; repeats itself on a daily basis Suggestion: investigate further into better means of isolating seasonal data; some more sophisticated algorithms exist (ARIMA, stochastic volatility models).


Download ppt "Can we reliably forecast individual 3G usage data? An analysis using mathematical simulation of time series algorithms Cosmo Zheng."

Similar presentations


Ads by Google