Download presentation

Presentation is loading. Please wait.

Published byGabriel Gallagher Modified over 3 years ago

1
Criando testes usando randomizações

2
m = c(120,107,110,116,114,111,113,117,114,112) > f = c(110,111,107,108,110,105,107,106,111,111) boxplot(m,f, names = c("machos", "fêmeas"))

4
require(boot) media = function(x,i)mean(x[i]) bootm = boot(m, media, 1000)

5
plot (bootm)

7
> names(bootm) [1] "t0" "t" "R" "data" "seed" "statistic" [7] "sim" "call" "stype" "strata" "weights"

8
hist(bootm$t, xlab =NULL, main = NULL )

10
hist(bootm$t, xlab ="comprimento do crânio", ylab = "freqüência",main = "Machos", freq = F ) > curve (dnorm(x, mean = 113.4, sd=3.7178),lwd = 3, add = T)

13
cranio = data.frame(m,f) > cranio m f 1 120 110 2 107 111 3 110 107 4 116 108 5 114 110 6 111 105 7 113 107 8 117 106 9 114 111 10 112 111

14
dmf = function (x,i)mean(cranio$m[i])-mean(cranio$f[i]) > bootdmf= boot(cranio,dmf, 1000) > boxplot (bootdmf$t, ylab= "diferença de comprimentos")

16
hist(bootdmf$t, xlab ="diferença de comprimento do crânio", main = NULL, freq = F ) curve (dnorm(x, mean = 4.8, sd=1.329), add = T) curve (dnorm(x, mean = 0, sd=1.329), lwd = 3, col = 2, add = T, pch = 4)

20
bootdmf ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = cranio, statistic = dmf, R = 1000) Bootstrap Statistics : original bias std. error t1* 4.8 -0.0274 1.329382

21
pmf = function (x,i)mean(cranio$m[i])/mean(cranio$f[i]) > bootpmf= boot(cranio,pmf, 1000) > bootpmf ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = cranio, statistic = pmf, R = 1000) Bootstrap Statistics : original bias std. error t1* 1.044199 -0.0002888062 0.01231848

22
quantile(bootpmf$t, c(0.01, 0.99)) 1% 99% 1.013604 1.071238 > min(bootpmf$t) [1] 1.00271

23
hist(bootpmf$t, xlab ="índice de comprimento m/f", main = NULL, freq = F ) > curve (dnorm(x, mean = 1, sd=0.01231848), add = T)

26
> hist(bootpmf$t, xlab ="índice de comprimento m/f",ylab = "densidade", main = NULL, freq = F ) > curve (dnorm(x, mean = 1, sd=0.01231848), lwd = 2, col = 3,add = T) > curve (dnorm(x, mean = 1.044199, sd=0.01231848), lwd = 2, col = 1,add = T)

Similar presentations

OK

Two topics in R: Simulation and goodness-of-fit HWU - GS.

Two topics in R: Simulation and goodness-of-fit HWU - GS.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on front office operation Joints anatomy and physiology ppt on cells Ppt on conventional energy sources Ppt on earth dam breach Download ppt on computer vs books essays Ppt on stock market in india Ppt on excess demand and deficient demand Ppt on water resources in civil engineering Ppt on different types of transport Ppt on networking related topics to accounting