Download presentation

Presentation is loading. Please wait.

Published byIsai Boddy Modified over 2 years ago

1
Chapter 16 Part 4 CONTINUOUS RANDOM VARIABLES

2
When two independent continuous random variables are Normally distributed, so is their sum or difference. Remember the Normal model?

3
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. What is the probability that packing two consecutive systems takes over 20 minutes? Step 1: Find E(P1+P2) and SD(P1+P2)

4
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. What is the probability that packing two consecutive systems takes over 20 minutes? Step 2: Model with N(18,2.12)

5
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. What is the probability that packing two consecutive systems takes over 20 minutes? Step 3: Find the z-score for 20 minutes

6
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. What is the probability that packing two consecutive systems takes over 20 minutes? Step 4: Use a z- table to find the probability

7
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. What is the probability that packing two consecutive systems takes over 20 minutes? Step 5: State your conclusion There is a 17.36% chance that it will take a total of over 20 minutes to pack two consecutive stereo systems.

8
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. The boxing time is also normally distributed with a mean of 6 minutes and a standard deviation of 1 minute. What percentage of the stereo systems take longer to pack than to box? Step 1: Find E(P-B) and SD(P-B)

9
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. The boxing time is also normally distributed with a mean of 6 minutes and a standard deviation of 1 minute. What percentage of the stereo systems take longer to pack than to box? Step 2: Model with N(3,1.8)

10
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. The boxing time is also normally distributed with a mean of 6 minutes and a standard deviation of 1 minute. What percentage of the stereo systems take longer to pack than to box? Step 3: Calculate the z- score for 0 minutes

11
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. The boxing time is also normally distributed with a mean of 6 minutes and a standard deviation of 1 minute. What percentage of the stereo systems take longer to pack than to box? Step 4: Use a z-table to find the probability

12
A company that ships stereos has a packing time that is normally distributed with a mean of 9 minutes and a standard deviation of 1.5 minutes. The boxing time is also normally distributed with a mean of 6 minutes and a standard deviation of 1 minute. What percentage of the stereo systems take longer to pack than to box? Step 5: State your conclusion There is a 95.25% chance that the stereo systems will require more time for packing than boxing.

13
Today’s Assignment: Pg. 386 #42

Similar presentations

Presentation is loading. Please wait....

OK

Chapter 7, Sample Distribution

Chapter 7, Sample Distribution

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on global warming with sound Ppt on object-oriented programming languages Elementary ppt on cells Ppt on review of related literature meaning Ppt on any business plan Ppt on properties of material Ppt on indian textile industries chicago Ppt on obesity diet management Ppt on unity in diversity dance Ppt on chief minister of india