Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bahan kajian pada MK DASAR ILMU TANAH AIR – LENGAS TANAH Disarikan oleh: SMNO.jursntnhfpub.Sept2012.

Similar presentations


Presentation on theme: "Bahan kajian pada MK DASAR ILMU TANAH AIR – LENGAS TANAH Disarikan oleh: SMNO.jursntnhfpub.Sept2012."— Presentation transcript:

1 Bahan kajian pada MK DASAR ILMU TANAH AIR – LENGAS TANAH Disarikan oleh: SMNO.jursntnhfpub.Sept2012

2 CIRI-CIRI TANAH Tekstur Tanah –Definition: relative proportions of various sizes of individual soil particles –USDA classifications Sand: 0.05 – 2.0 mm Silt: mm Clay: <0.002 mm –Textural triangle: USDA Textural Classes –Coarse vs. Fine, Light vs. Heavy –Affects water movement and storage Struktur Tanah –Definition: how soil particles are grouped or arranged –Affects root penetration and water intake and movement

3 USDA Textural Triangle SEGITIGA TEKSTUR TANAH

4 Bulk Density (  b ) –  b = soil bulk density, g/cm 3 –M s = mass of dry soil, g –V b = volume of soil sample, cm 3 Typical values: g/cm 3 Particle Density (  p ) –  P = soil particle density, g/cm 3 –M s = mass of dry soil, g –V s = volume of solids, cm 3 Typical values: g/cm 3

5 Porositas tanah (  ) Nilai-nilai yang khas: %

6 AIR DALAM TANAH Kadar Air (Lengas) Tanah –Mass water content (  m ) –  m = mass water content (fraction) –M w = mass of water evaporated, g (  o C) –M s = mass of dry soil, g

7 Kadar air volumetrik (  v ) –  V = volumetric water content (fraction) –V w = volume of water –V b = volume of soil sample –At saturation,  V =  –  V = As  m –As = apparent soil specific gravity =  b /  w (  w = density of water = 1 g/cm 3 ) –As =  b numerically when units of g/cm 3 are used Ekuivalen kedalaman air (d) –d = volume of water per unit land area = (  v A L) / A =  v L –d = equivalent depth of water in a soil layer –L = depth (thickness) of the soil layer

8 Kadar air volumetrik & Kedalaman ekuivalen (g) (cm 3 ) Equivalent Depth

9 1 in in in in in. Soil Solids (Particles): 50% Total Pore Space: 50% Very Large Pores: 15% (Gravitational Water) Medium-sized Pores: 20% (Plant Available Water) Very Small Pores: 15% (Unavailable Water) Kadar air volumetrik & Kedalaman ekuivalen

10 Daya Simpan Air = Water-Holding Capacity of Soil Effect of Soil Texture Coarse Sand Silty Clay Loam Gravitational Water Water Holding Capacity Available Water Unavailable Water Dry Soil

11 POTENSIAL AIR TANAH DESKRIPSI –Ukuran dari status energi air tanah –Important because it reflects how hard plants must work to extract water –Units of measure are normally bars or atmospheres –Soil water potentials are negative pressures (tension or suction) –Water flows from a higher (less negative) potential to a lower (more negative) potential

12 Komponen –  t = total potensial air tanah –  g = gravitational potential (force of gravity pulling on the water) –  m = matric potential (force placed on the water by the soil matrix – soil water “tension”) –  o = osmotic potential (due to the difference in salt concentration across a semi-permeable membrane, such as a plant root) –Matric potential,  m, normally has the greatest effect on release of water from soil to plants POTENSIAL AIR TANAH

13 Kurva pelepasan air tanah : –Curve of matric potential (tension) vs. water content –Less water  more tension –At a given tension, finer-textured soils retain more water (larger number of small pores)

14 Height of capillary rise inversely related to tube diameter Potential Matriks dan Tekstur Tanah The tension or suction created by small capillary tubes (small soil pores) is greater that that created by large tubes (large soil pores). At any given matric potential coarse soils hold less water than fine-textured soils.

15 Kapasitas Lapang= Field Capacity (FC or  fc ) 1.Soil water content where gravity drainage becomes negligible 2.Soil is not saturated but still a very wet condition 3.Traditionally defined as the water content corresponding to a soil water potential of -1/10 to -1/3 bar Titik Layu Permanen: Permanent Wilting Point (WP or  wp ) 1.Soil water content beyond which plants cannot recover from water stress (dead) 2.Still some water in the soil but not enough to be of use to plants 3.Traditionally defined as the water content corresponding to -15 bars of SWP

16 Relasi-relasi Lengas Tanah Diunduh dari: Soil Water Phases - N. Sivakugan

17 Menghitung masa (atau bobot) dan volume dari tiga fase yang berbeda soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Diagram Fase Notation M = mass or weight V = volume s = soil grains w = water a = air v = voids t = total Diunduh dari: Soil Water Phases - N. Sivakugan

18 Definisi Kadar air (w) merupakan ukuran air yang ada dalam tanah. soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Phase Diagram Expressed as percentage. Range = 0 – 100+%. X 100% Diunduh dari: Soil Water Phases - N. Sivakugan

19 Definisi: Void ratio (e) is a measure of the void volume. soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

20 Definisi: Porosity (n) is also a measure of the void volume, expressed as a percentage. soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Phase Diagram X 100% Theoretical range: 0 – 100% Diunduh dari: Soil Water Phases - N. Sivakugan

21 Definisi Derajat kejenuhan (S): persentase pori yang terisi air. soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Phase Diagram Range: 0 – 100% X 100% Dry Saturated Diunduh dari: Soil Water Phases - N. Sivakugan

22 Contoh sederhana: water air soil Dalam ilustrasi ini: e = 1 n = 50% S = 50% Diunduh dari: Soil Water Phases - N. Sivakugan

23 Definisi Bobot Isi (  m ) adalah kerapatan tanah dalam kondisi apa adanya. soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Phase Diagram Units: t/m 3, g/ml, kg/m 3 Diunduh dari: Soil Water Phases - N. Sivakugan

24 Definisi Saturated density (  sat ) is the density of the soil when the voids are filled with water. Submerged density (  ’) is the effective density of the soil when it is submerged.  ’ =  sat -  w Diunduh dari: Soil Water Phases - N. Sivakugan

25 Definisi Kerapatan kering (  d ) : kerapatan tanah pada kondisi kering. soil air water VsVs VaVa M a =0 MsMs MwMw MtMt VwVw VvVv VtVt Diagram Fase Units: t/m 3, g/ml, kg/m 3 Diunduh dari: Soil Water Phases - N. Sivakugan

26 Definisi Bulk, saturated, dry and submerged unit weights (  ) are defined in a similar manner.  =  g Here, use weight (kN) instead of mass (kg). Berat jenis (kerapatan jenis) partikel tanah (G s ) biasanya berkisar antara 2.6 dan 2.8. kg/m 3 N/m 3 m/s 2 Diunduh dari: Soil Water Phases - N. Sivakugan

27 Hubungan Fase Perhatikan fraksi tanah dimana V s = 1. soil air water 1 GswGsw Se  w Se e Diagram Fase The other volumes can be obtained from the previous definitions. Massa = Kerapatan x Volume volumesmasses The masses can be obtained from: Diunduh dari: Soil Water Phases - N. Sivakugan

28 Hubungan Fase Dari definisi sebelumnya: soil air water 1 GswGsw Se  w SeSe e Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

29 Hubungan Fase soil air water 1 GswGsw Se  w Se e Diagram Fase Diunduh dari: Soil Water Phases - N. Sivakugan

30 AIR TANAH TERSEDIA Definisi: 1.Water held in the soil between field capacity and permanent wilting point 2.“Tersedia” untuk digunakan oleh tanaman Kapasitas Air Tersedia: Available Water Capacity (AWC) 1.AWC =  fc -  wp 2.Units: depth of available water per unit depth of soil, “unitless” (in/in, or mm/mm) 3.Measured using field or laboratory methods (described in text)

31 Sifat Hidraulik Tanah & Tekstur Tanah

32 Fraksi air-tersedia yang hilanbg dari tanah (f d ) –(  fc -  v ) = soil water deficit (SWD) –  v = current soil volumetric water content Fraksi air-tersedia yang tertinggal (f r ) –(  v -  wp ) = soil water balance (SWB)

33 Total Air Tersedia: Total Available Water (TAW) TAW = (AWC) (R d ) 1.TAW = total available water capacity within the plant root zone, (inches) 2.AWC = available water capacity of the soil, (inches of H 2 O/inch of soil) 3.R d = depth of the plant root zone, (inches) 4.If different soil layers have different AWC’s, need to sum up the layer-by-layer TAW’s TAW = (AWC 1 ) (L 1 ) + (AWC 2 ) (L 2 ) +... (AWC N ) (L N ) - L = thickness of soil layer, (inches) - 1, 2, N : subscripts represent each successive soil layer

34 Horizontal movement due to capillarity Vertical movement due largely to gravity Gravity vs. Capillarity

35 Infiltrasi Air : Masuknya air ke dalam tanah Faktor-faktor yang mempengaruhi: Tekstur tanah Kandungan-awal lengas tanah Kerak permukaan (structure, etc.) Soil cracking Praktek pengolahan tanah Metode aplikasi air (e.g., Basin vs. Furrow) Suhu air.

36 Infiltrasi Kumulatif vs. Tekstur Tanah

37 Laju Infiltrasi vs. Waktu Untuk tekstur tanah yang berbeda

38 Laju Infiltrasi dan Tekstur Tanah

39 Laju infiltrasi vs. Laju irigasi konstan

40 Laju infiltrasi vs. Laju irigasi beragam

41 Kedalaman Penetrasi Air 1.Can be viewed as sequentially filling the soil profile in layers 2.Deep percolation: water penetrating deeper than the bottom of the root zone 3.Pencucian : transport of chemicals from the root zone due to deep percolation

42 Simpanan lengas (air) dalam profil tanah yang berlapis-lapis

43 Kekuatan ikatan antara molekul air dengan partikel tanah dinyatakan dengan TEGANGAN AIR TANAH. Ini merupakan fungsi dari gaya-gaya adesi dan kohesi di antara molekul - molekul air dan partikel tanah Partikel tanah H2O Adesi Kohesi Air terikatAir bebas 43

44 Air Tersedia untuk pertumbuhan tanaman

45 Status Air Tanah Perubahan status air dalam tanah, mulai dari kondisi jenuh hingga titik layu Jenuh Kap. Lapang Titik layu 100g 8g udara Padatan Pori 100g 20g udara 100g 10 g udara 100g air 40g tanah jenuh air kapasitas lapang koefisien layu koefisien higroskopis 45

46 TEGANGAN & KADAR AIR PERHATIKANLAH proses yang terjadi kalau tanah basah dibiarkan mengering. Bagan berikut melukiskan hubungan antara tebal lapisan air di sekeliling partikel tanah dengan tegangan air Bidang singgung tanah dan air Koef. Koef. Kapasitas padatan tanah higroskopis layu lapang atm 31 atm 15 atm 1/3 atm atmMengalir krn gravitasi Tegangan air 1/3 atm tebal lapisan air

47 JUMLAH AIR DALAM TANAH The amount of soil water is usually measured in terms of water content as percentage by volume or mass, or as soil water potential. Water content does not necessarily describe the availability of the water to the plants, nor indicates, how the water moves within the soil profile. The only information provided by water content is the relative amount of water in the soil. Soil water potential, which is defined as the energy required to remove water from the soil, does not directly give the amount of water present in the root zone either. Therefore, soil water content and soil water potential should both be considered when dealing with plant growth and irrigation. The soil water content and soil water potential are related to each other, and the soil water characteristic curve provides a graphical representation of this relationship. 47

48 TEGANGAN vs kadar air Kurva tegangan - kadar air tanah bertekstur lempung Tegangan air, bar 31Koefisien higroskopis Koefisien layu Kapasitas lapang 0.1 Kap. Lapang maksimum persen air tanah Air kapiler Air Air tersedia higros- kopis Lambat tersedia Cepat tersedia Air gravitasi Zone optimum

49 Hubungan antara kadar air tanah dan tegangan air tanah untuk tekstur lempung

50 STRUKTUR & CIRI POLARITAS Molekul air mempunyai dua ujung, yaitu ujung oksigen yg elektronegatif dan ujung hidrogen yang elektro-positif. Dalam kondisi cair, molekul-molekul air saling bergandengan membentuk kelompok-kelompok kecil tdk teratur. Ciri polaritas ini menyebabkan plekul air tertarik pada ion- ion elektrostatis. Kation-kation K+, Na+, Ca++ menjadi berhidrasi kalau ada molekul air, membentuk selimut air, ujung negatif melekat kation. Permukaan liat yang bermuatan negatif, menarik ujung positif molekul air. Kation hidrasiTebalnya selubung air tgt pd rapat muatan pd per- mukaan kation. Rapat muatan = Selubung air muatan kation / luas permukaan 50

51 STRUKTUR & CIRI IKATAN HIDROGEN Atom hidrogen berfungsi sebagai titik penyambung (jembatan) antar molekul air. Ikatan hidrogen inilah yg menyebabkan titik didih dan viskositas air relatif tinggi KOHESI vs. ADHESI Kohesi: ikatan hidrogen antar molekul air Adhesi: ikatan antara molekul air dengan permukaan padatan lainnya Melalui kedua gaya-gaya ini partikel tanah mampu menahan air dan mengendalikan gerakannya dalam tanah TEGANGAN PERMUKAAN Terjadinya pada bidang persentuhan air dan udara, gaya kohesi antar molekul air lebih besra daripada adhesi antara air dan udara. Udara Permukaan air-udara air

52 ENERGI AIR TANAH Retensi dan pergerakan air tanah melibatkan energi, yaitu: Energi Potensial, Energi Kinetik dan Energi Elektrik. Selanjutnya status energi dari air disebut ENERGI BEBAS, yang merupakan PENJUMLAHAN dari SEMUA BENTUK ENERGI yang ada. Air bergerak dari zone air berenergi bebas tinggi (tanah basah) menuju zone air berenergi bebas rendah (tanah kering). Gaya-gaya yg berpengaruh Gaya matrik: tarikan padatan tanah (matrik) thd molekul air; Gaya osmotik: tarikan kation-kation terlarut thd molekul air Gaya gravitasi: tarikan bumi terhadap molekul air tanah. Potensial air tanah Ketiga gaya tersebut di atas bekerja bersama mempengaruhi energi bebas air tanah, dan selanjutnya menentukan perilaku air tanah, ….. POTENSIAL TOTAL AIR TANAH (PTAT) PTAT adalah jumlah kerja yg harus dilakukan untuk memindahkan secara berlawanan arah sejumlah air murni bebas dari ketinggian tertentu secara isotermik ke posisi tertentu air tanah. PTAT = Pt = perbedaan antara status energi air tanah dan air murni bebas Pt = Pg + Pm + Po + ………………………… ( t = total; g = gravitasi; m = matrik; o = osmotik)

53 Hubungan potensial air tanah dengan energi bebas Energi bebas naik bila air tanah berada pada letak ketinggian yg lebih tinggi dari titik baku pengenal (referensi) Poten- sial positif Poten- sial negatif Energi bebas dari air murni Potensial tarikan bumi Menurun karena pengaruh osmotik Menurun karena pengaruh matrik Energi bebas dari air tanah Potensial osmotik (hisapan) Potensial matrik (hisapan)

54 POTENSIAL AIR TANAH POTENSIAL TARIKAN BUMI = Potensial gravitasi Pg = G.h dimana G = percepatan gravitasi, h = tinggi air tanah di atas posisi ketinggian referensi. Potensial gravitasi berperanan penting dalam menghilangkan kelebihan air dari bagian atas zone perakaran setelah hujan lebat atau irigasi Potensial matrik dan Osmotik Potensial matrik merupakan hasil dari gaya-gaya jerapan dan kapilaritas. Gaya jerapan ditentukan oleh tarikan air oleh padatan tanah dan kation jerapan Gaya kapilaritas disebabkan oleh adanya tegangan permukaan air. Potensial matriks selalu negatif Potensial osmotik terdapat pd larutan tanah, disebabkan oleh adanya bahan-bahan terlarut (ionik dan non-ionik). Pengaruh utama potensial osmotik adalah pada serapan air oleh tanaman Hisapan dan Tegangan Potensial matrik dan osmotik adalah negatif, keduanya bersifat menurunkan energi bebas air tanah. Oleh karena itu seringkali potensial negatif itu disebut HISAPAN atau TEGANGAN. Hisapan atau Tegangan dapat dinyatakan dengan satuan-satuan positif. Jadi padatan-tanah bertanggung jawab atas munculnya HISAPAN atau TEGANGAN.

55 Cara Menyatakan Tegangan Energi Tegangan: dinyatakan dengan “tinggi (cm) dari satuan kolom air yang bobotnya sama dengan tegangan tsb”. Tinggi kolom air (cm) tersebut lazimnya dikonversi menjadi logaritma dari sentimeter tinggi kolom air, selanjutnya disebut pF. Tinggi unit Logaritma BarAtmosfer kolom air (cm) tinggi kolom air (pF)

56 KANDUNGAN AIR DAN TEGANGAN KURVA ENERGI - LENGAS TANAH Tegangan air menurun secara gradual dengan meningkatnya kadar air tanah. Tanah liat menahan air lebih banyak dibanding tanah pasir pada nilai tegangan air yang sama Tanah yang Strukturnya baik mempunyai total pori lebih banyak, shg mampu menahan air lebih banyak Pori medium dan mikro lebih kuat menahan air dp pori makro Tegangan air tanah, Bar Liat Lempung Pasir Kadar air tanah, %70

57 Tekstur tanah dan air tersedia

58 Hubungan antara kadar air tanah dengan tegangan air tanah 58

59 Jelaskan bagaimana tektur tanah mempengaruhi jumlah air tersedia bagi tanaman? Sebanyak 250 kata

60 Jelaskan tanah-tanah yang tekturnya halus mampu menahan lebih banyak air dibandingkan dgn tanah-tanah yang teksturnya kasar? Sebanyak 250 kata

61 Kapasitas air tersedia dalam tanah yang teksturnya berbeda- beda

62 Gerakan Air Tanah Tidak Jenuh Gerakan tidak jenuh = gejala kapilaritas = air bergerak dari muka air tanah ke atas melalui pori mikro. Gaya adhesi dan kohesi bekerja aktif pada kolom air (dalam pri mikro), ujung kolom air berbentuk cekung. Perbedaan tegangan air tanah akan menentukan arah gerakan air tanah secara tidak jenuh. Air bergerak dari daerah dengan tegangan rendah (kadar air tinggi) ke daerah yang tegangannya tinggi (kadar air rendah, kering). Gerakan air ini dapat terjadi ke segala arah dan berlangsung secara terus-menerus. Pelapisan tanah berpengaruh terhadap gerakan air tanah. Lapisan keras atau lapisan kedap air memperlambat gerakan air Lapisan berpasir menjadi penghalang bagi gerakan air dari lapisan yg bertekstur halus. Gerakan air dlm lapisan berpasir sgt lambat pd tegangan 62

63 Gerakan Jenuh (Perkolasi) Air hujan dan irigasi memasuki tanah, menggantikan udara dalam pori makro - medium - mikro. Selanjutnya air bergerak ke bawah melalui proses gerakan jenuh dibawah pengaruh gaya gravitasi dan kapiler. Gerakan air jenuh ke arah bawah ini berlangsung terus selama cukup air dan tidak ada lapisan penghalang Lempung berpasir Lempung berliat cm 0 15 mnt4 jam jam24 jam jam48 jam cm 60 cm Jarak dari tengah-tengah saluran, cm 63

64 Pola Penetrasi dan Pergerakan Air pada tanah Berpasir dan tanah Lempung-liat 64

65 PERKOLASI Jumlah air perkolasi Faktor yg berpengaruh: 1. Jumlah air yang ditambahkan 2. Kemampuan infiltrasi permukaan tanah 3. Daya hantar air horison tanah 4. Jumlah air yg ditahan profil tanah pd kondisi kapasitas lapang Keempat faktor di atas ditentukan oleh struktur dan tekstur tanah Tanah berpasir punya kapasitas ilfiltrasi dan daya hantar air sangat tinggi, kemampuan menahan air rendah, shg perkolasinya mudah dan cepat Tanah tekstur halus, umumnya perkolasinya rendah dan sangat beragam; faktor lain yg berpengaruh: 1. Bahan liat koloidal dpt menyumbat pori mikro & medium 2. Liat tipe 2:1 yang mengembang-mengkerut sangat berperan 65

66 LAJU GERAKAN AIR TANAH Kecepatan gerakan air dlm tanah dipengaruhi oleh dua faktor: 1. Daya dari air yang bergerak 2. Hantaran hidraulik = Hantaran kapiler = daya hantar i = k.f dimana i = volume air yang bergerak; f = daya air yg bergerak dan k = konstante. Daya air yg bergerak = daya penggerak, ditentukan oleh dua faktor: 1. Gaya gravitasi, berpengaruh thd gerak ke bawah 2. Selisih tegangan air tanah, ke semua arah Gerakan air semakin cepat kalau perbedaan tegangan semakin tinggi. Hantaran hidraulik ditentukan oleh bbrp faktor: 1. Ukuran pori tanah 2. Besarnya tegangan untuk menahan air Pada gerakan jenuh, tegangan airnya rendah, shg hantaran hidraulik berbanding lurus dengan ukuran pori Pd tanah pasir, penurunan daya hantar lebih jelas kalau terjadi penurunan kandungan air tanah Lapisan pasir dlm profil tanah akan menjadi penghalang gerakan air tidak jenuh 66

67 Gerakan air tanah Gerakan air tanah dipengaruhi oleh kandungan air tanah Penetrasi air dari tnh basah ke tnh kering (cm) 18 Tanah lembab, kadar air awal 29% Tanah lembab, kadar air awal 20.2% Tanah lembab, kadar air awal 15.9% Jumlah hari kontak, hari Sumber: Gardner & Widtsoe, 1921.

68 Pengukuran Air Tanah Metode Gravimetrik 1.Mengukur kandungan massa air (  m ) 2.Take field samples  weigh  oven dry  weigh 3.Advantages: accurate; Multiple locations 4.Kelemahan: memerlukan tenaga dan waktu Metode Perasaan: Feel and appearance 1.Take field samples and feel them by hand 2.Advantages: low cost; Multiple locations 3.Disadvantages: experience required; Not highly accurate

69 Pencaran neutron (attenuation) –Measures volumetric water content (  v ) –Attenuation of high-energy neutrons by hydrogen nucleus –Advantages: samples a relatively large soil sphere repeatedly sample same site and several depths accurate –Disadvantages: high cost instrument radioactive licensing and safety not reliable for shallow measurements near the soil surface Konstante dielektrik 1.A soil’s dielectric constant is dependent on soil moisture 2.Time domain reflectometry (TDR) 3.Frequency domain reflectometry (FDR) 4.Primarily used for research purposes at this time Pengukuran Air Tanah

70 Pengukuran Air Tanah: Neutron Attenuation

71 Tensiometer –Measure soil water potential (tension) –Practical operating range is about 0 to 0.75 bar of tension (this can be a limitation on medium- and fine-textured soils) Electrical resistance blocks –Measure soil water potential (tension) –Tend to work better at higher tensions (lower water contents) Thermal dissipation blocks –Measure soil water potential (tension) –Require individual calibration Pengukuran Air Tanah

72 Tensiometer untuk mengukur potensial air tanah Porous Ceramic Tip Vacuum Gauge (0-100 centibar) Water Reservoir Variable Tube Length (12 in- 48 in) Based on Root Zone Depth

73 Electrical Resistance Blocks & Meters


Download ppt "Bahan kajian pada MK DASAR ILMU TANAH AIR – LENGAS TANAH Disarikan oleh: SMNO.jursntnhfpub.Sept2012."

Similar presentations


Ads by Google