Presentation is loading. Please wait.

Presentation is loading. Please wait.

ATMOSPHERIC POLLUTION AND ALTERNATIVE SOURCES OF ENERGY Małgorzata Mendala III „B”

Similar presentations


Presentation on theme: "ATMOSPHERIC POLLUTION AND ALTERNATIVE SOURCES OF ENERGY Małgorzata Mendala III „B”"— Presentation transcript:

1 ATMOSPHERIC POLLUTION AND ALTERNATIVE SOURCES OF ENERGY Małgorzata Mendala III „B”

2 WHAT IS THE EARTH’S ATMOSPHERE?

3 The a layer of gases surrounding the planet Earth that is retained by the Earth's gravity. Dry air contains roughly (by volume) 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.038% carbon dioxide, and trace amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night. The Earth's atmosphere (or air) is a layer of gases surrounding the planet Earth that is retained by the Earth's gravity. Dry air contains roughly (by volume) 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.038% carbon dioxide, and trace amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night. There is no definite boundary between the atmosphere and outer space. It slowly becomes thinner and fades into space. An altitude of 120 km (75 mi) marks the boundary where atmospheric effects become noticeable during reentry. The Kármán line, at 100 km (62 mi), is also frequently regarded as the boundary between atmosphere and outer space. Three quarters of the atmosphere's mass is within 11 km (6.8 mi; 36,000 ft) of the surface. There is no definite boundary between the atmosphere and outer space. It slowly becomes thinner and fades into space. An altitude of 120 km (75 mi) marks the boundary where atmospheric effects become noticeable during reentry. The Kármán line, at 100 km (62 mi), is also frequently regarded as the boundary between atmosphere and outer space. Three quarters of the atmosphere's mass is within 11 km (6.8 mi; 36,000 ft) of the surface.

4 ATMOSPHERIC POLLUTION

5 GREENHOUSE EFFECT

6 The greenhouse effect is unquestionably real and helps to regulate the temperature of our planet. It is essential for life on Earth and is one of Earth's natural processes. It is the result of heat absorption by certain gases in the atmosphere (called greenhouse gases because they effectively 'trap' heat in the lower atmosphere) and re-radiation downward of some of that heat. Water vapor is the most abundant greenhouse gas, followed by carbon dioxide and other trace gases. Without a natural greenhouse effect, the temperature of the Earth would be about zero degrees F (-18°C) instead of its present 57°F (14°C). So, the concern is not with the fact that we have a greenhouse effect, but whether human activities are leading to an enhancement of the greenhouse effect by the emission of greenhouse gases through fossil fuel combustion and deforestation. The greenhouse effect is unquestionably real and helps to regulate the temperature of our planet. It is essential for life on Earth and is one of Earth's natural processes. It is the result of heat absorption by certain gases in the atmosphere (called greenhouse gases because they effectively 'trap' heat in the lower atmosphere) and re-radiation downward of some of that heat. Water vapor is the most abundant greenhouse gas, followed by carbon dioxide and other trace gases. Without a natural greenhouse effect, the temperature of the Earth would be about zero degrees F (-18°C) instead of its present 57°F (14°C). So, the concern is not with the fact that we have a greenhouse effect, but whether human activities are leading to an enhancement of the greenhouse effect by the emission of greenhouse gases through fossil fuel combustion and deforestation.

7

8

9

10 SMOG: classic and photochemical

11 Classic Smog In its most primitive and basic form, smog air pollution is the result of the burning of fossil fuels. It has several major components: 1) Smoke, which is tiny particles of ash, is released from the smokestacks of coal fired power stations. Coal power plants are now on the whole designed to trap this ash, called fly ash, which can be used to great effect in the concrete industry. These tiny particles contain not only carbon residue, but also silicon dioxide, calcium oxide and traces of heavy metals. If inhaled these can pose significant health risks. The silicon dioxide in the fly ash alone can cause lesions, scarring and inflammation of the lungs.

12 2) Sulfur Dioxide. Sulfur is present in all fossil fuels and is released as Sulfur Dioxide when the fuels are burned. Sulfur Dioxide reacts with oxygen gas to give Sulfur Trioxide. This then can react with water to to give Sulfuric Acid (H2SO4). Another possibility is that the Sulfur Dioxide reacts immediately with water to give Sulfurous Acid (H2SO3). 2) Sulfur Dioxide. Sulfur is present in all fossil fuels and is released as Sulfur Dioxide when the fuels are burned. Sulfur Dioxide reacts with oxygen gas to give Sulfur Trioxide. This then can react with water to to give Sulfuric Acid (H2SO4). Another possibility is that the Sulfur Dioxide reacts immediately with water to give Sulfurous Acid (H2SO3). Either way, the acid produced is highly reactive and capable of causing significant damage to crops, soil, buildings and more. Several industrialized nations now employ technology that captures approximately a third of Sulfur Dioxide from the emission gases of power stations, greatly reducing the problems of acid rain. Either way, the acid produced is highly reactive and capable of causing significant damage to crops, soil, buildings and more. Several industrialized nations now employ technology that captures approximately a third of Sulfur Dioxide from the emission gases of power stations, greatly reducing the problems of acid rain.

13 Photochemical Smog This is a far more noxious mixture of chemicals than classic smog air pollution. Significant inroads have been made to reduce the main contributors to classic smog. Such efforts in relation to photochemical smog are still in their early stages. This is a far more noxious mixture of chemicals than classic smog air pollution. Significant inroads have been made to reduce the main contributors to classic smog. Such efforts in relation to photochemical smog are still in their early stages. Photochemical smog air pollution is a mixture of various chemicals that react with sunlight to produce new chemicals. This is where the name comes from; photo means light and chemical means chemical, or product of a chemical reaction. The chemical reactions involved are complex and while they are important, we need to know the source of these pollutants and their effects. Photochemical smog air pollution is a mixture of various chemicals that react with sunlight to produce new chemicals. This is where the name comes from; photo means light and chemical means chemical, or product of a chemical reaction. The chemical reactions involved are complex and while they are important, we need to know the source of these pollutants and their effects. The chemicals involved need to be addressed separately. The three main ingredients are Nitrous Oxides, volatile organic compounds and Ozone. Carbon Monoxide is a toxic byproduct of fossil fuel combustion but is considered separate to photochemical smog. The chemicals involved need to be addressed separately. The three main ingredients are Nitrous Oxides, volatile organic compounds and Ozone. Carbon Monoxide is a toxic byproduct of fossil fuel combustion but is considered separate to photochemical smog.

14 ACID RAIN

15

16 Acid rain is rain or any other form of precipitation that is unusually acidic. It has harmful effects on plants, aquatic animals, and infrastructure. Acid rain is mostly caused by human emissions of sulfur and nitrogen compounds which react in the atmosphere to produce acids. In recent years, many governments have introduced laws to reduce these emissions. Acid rain is rain or any other form of precipitation that is unusually acidic. It has harmful effects on plants, aquatic animals, and infrastructure. Acid rain is mostly caused by human emissions of sulfur and nitrogen compounds which react in the atmosphere to produce acids. In recent years, many governments have introduced laws to reduce these emissions.

17 "Acid rain" is a popular term referring to the deposition of wet (rain, snow, sleet, fog and cloudwater, dew) and dry (acidifying particles and gases) acidic components. A more accurate term is “acid deposition”. Distilled water, which contains no carbon dioxide, has a neutral pH of 7. Liquids with a pH less than 7 are acidic, and those with a pH greater than 7 are bases. “Clean” or unpolluted rain has a slightly acidic pH of about 5.2, because carbon dioxide and water in the air react together to form carbonic acid, a weak acid (pH 5.6 in distilled water), but unpolluted rain also contains other chemicals.[1] "Acid rain" is a popular term referring to the deposition of wet (rain, snow, sleet, fog and cloudwater, dew) and dry (acidifying particles and gases) acidic components. A more accurate term is “acid deposition”. Distilled water, which contains no carbon dioxide, has a neutral pH of 7. Liquids with a pH less than 7 are acidic, and those with a pH greater than 7 are bases. “Clean” or unpolluted rain has a slightly acidic pH of about 5.2, because carbon dioxide and water in the air react together to form carbonic acid, a weak acid (pH 5.6 in distilled water), but unpolluted rain also contains other chemicals.[1] H2O (l) + CO2 (g) → H2CO3 (aq) H2O (l) + CO2 (g) → H2CO3 (aq) Carbonic acid then can ionize in water forming low concentrations of hydronium and carbonate ions: Carbonic acid then can ionize in water forming low concentrations of hydronium and carbonate ions: 2 H2O (l) + H2CO3 (aq) CO32− (aq) + 2 H3O+ (aq) 2 H2O (l) + H2CO3 (aq) CO32− (aq) + 2 H3O+ (aq)

18

19 OZONE LAYER

20 Ozone is a gas that occurs naturally in our atmosphere. Most of it is concentrated in the ozone layer, a region located in the stratosphere several miles above the surface of the Earth. Although ozone represents only a small fraction of the gas present in the atmosphere, it plays a vital role by shielding humans and other life from harmful ultraviolet light from the Sun. Human activities in the last several decades have produced chemicals, such as chlorofluorocarbons (CFCs), which have been released into the atmosphere and have contributed to the depletion of this important protective layer. When scientists realized the destructive effect these chemicals could have on the ozone layer, international agreements were put in place to limit such emissions. As a result, it is expected that the ozone layer will recover in the coming decades. Ozone is a gas that occurs naturally in our atmosphere. Most of it is concentrated in the ozone layer, a region located in the stratosphere several miles above the surface of the Earth. Although ozone represents only a small fraction of the gas present in the atmosphere, it plays a vital role by shielding humans and other life from harmful ultraviolet light from the Sun. Human activities in the last several decades have produced chemicals, such as chlorofluorocarbons (CFCs), which have been released into the atmosphere and have contributed to the depletion of this important protective layer. When scientists realized the destructive effect these chemicals could have on the ozone layer, international agreements were put in place to limit such emissions. As a result, it is expected that the ozone layer will recover in the coming decades.

21 Ozone is also a greenhouse gas in the upper atmosphere and, therefore, plays a role in Earth's climate. The increases in primary greenhouse gases, such as carbon dioxide, may affect how the ozone layer recovers in coming years. Understanding precisely how ozone abundances will change in a future with diminished chlorofluorocarbon emissions and increased emissions of greenhouse gases remains an important challenge for atmospheric scientists in NOAA and other research centers. Ozone is also a greenhouse gas in the upper atmosphere and, therefore, plays a role in Earth's climate. The increases in primary greenhouse gases, such as carbon dioxide, may affect how the ozone layer recovers in coming years. Understanding precisely how ozone abundances will change in a future with diminished chlorofluorocarbon emissions and increased emissions of greenhouse gases remains an important challenge for atmospheric scientists in NOAA and other research centers.

22

23

24 ALTERNATIVE SOURCES OF ENERGY

25 Solar Power

26 Solar energy is one the most resourceful sources of energy for the future. One of the reasons for this is that the total energy we recieve each year from the sun is around 35,000 times the total energy used by man. However, about 1/3 of this energy is either absorbed by the outer atmosphere or reflected back into space (a proccess called albedo)1. Solar energy is one the most resourceful sources of energy for the future. One of the reasons for this is that the total energy we recieve each year from the sun is around 35,000 times the total energy used by man. However, about 1/3 of this energy is either absorbed by the outer atmosphere or reflected back into space (a proccess called albedo)1. Solar energy is presently being used on a smaller scale in furnaces for homes and to heat up swimming pools. On a larger scale use, solar energy could be used to run cars, power plants, and space ships. Solar energy is presently being used on a smaller scale in furnaces for homes and to heat up swimming pools. On a larger scale use, solar energy could be used to run cars, power plants, and space ships.

27 WIND POWER

28 Wind power is the conversion of wind energy into a useful form, such as electricity, using wind turbines. At the end of 2008, worldwide nameplate capacity of wind-powered generators was 121.2 gigawatts.[1] Wind power produces about 1.5% of worldwide electricity use,[1][2] and is growing rapidly, having doubled in the three years between 2005 and 2008. Several countries have achieved relatively high levels of wind power penetration, such as 19% of electricity production in Denmark, 11% in Spain and Portugal, and 7% in Germany and the Republic of Ireland in 2008. As of May 2009, eighty countries around the world are using wind power on a commercial basis.[2] Wind power is the conversion of wind energy into a useful form, such as electricity, using wind turbines. At the end of 2008, worldwide nameplate capacity of wind-powered generators was 121.2 gigawatts.[1] Wind power produces about 1.5% of worldwide electricity use,[1][2] and is growing rapidly, having doubled in the three years between 2005 and 2008. Several countries have achieved relatively high levels of wind power penetration, such as 19% of electricity production in Denmark, 11% in Spain and Portugal, and 7% in Germany and the Republic of Ireland in 2008. As of May 2009, eighty countries around the world are using wind power on a commercial basis.[2]

29 GEOTHERMALN ENERGY

30 Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma.

31 TIDAL POWER

32 The tide moves a huge amount of water twice each day, and harnessing it could provide a great deal of energy - around 20% of Britain's needs. The tide moves a huge amount of water twice each day, and harnessing it could provide a great deal of energy - around 20% of Britain's needs. Although the energy supply is reliable and plentiful, converting it into useful electrical power is not easy. Although the energy supply is reliable and plentiful, converting it into useful electrical power is not easy. There are eight main sites around Britain where tidal power stations could usefully be built, including the Severn, Dee, Solway and Humber estuaries. Only around 20 sites in the world have been identified as possible tidal power stations There are eight main sites around Britain where tidal power stations could usefully be built, including the Severn, Dee, Solway and Humber estuaries. Only around 20 sites in the world have been identified as possible tidal power stations

33 HYDROELECTRIC POWER

34 Hydroelectricity is electricity generated by hydropower, i.e., the production of power through use of the gravitational force of falling or flowing water. It is the most widely used form of renewable energy. Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of the greenhouse gas carbon dioxide (CO2) than fossil fuel powered energy plants. Worldwide, hydroelectricity supplied an estimated 816 GWe in 2005. This was approximately 20% of the world's electricity, and accounted for about 88% of electricity from renewable sources. Hydroelectricity is electricity generated by hydropower, i.e., the production of power through use of the gravitational force of falling or flowing water. It is the most widely used form of renewable energy. Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of the greenhouse gas carbon dioxide (CO2) than fossil fuel powered energy plants. Worldwide, hydroelectricity supplied an estimated 816 GWe in 2005. This was approximately 20% of the world's electricity, and accounted for about 88% of electricity from renewable sources.

35 THE END


Download ppt "ATMOSPHERIC POLLUTION AND ALTERNATIVE SOURCES OF ENERGY Małgorzata Mendala III „B”"

Similar presentations


Ads by Google