Presentation is loading. Please wait.

Presentation is loading. Please wait.

CBM at FAIR Walter F.J. Müller, GSI, Darmstadt XXXVI. Treffen "Kernphysik", Schleching/Obb., 17-24 February 2005 Vortrag zum Thema: Hochleistungsdatenverarbeitung.

Similar presentations


Presentation on theme: "CBM at FAIR Walter F.J. Müller, GSI, Darmstadt XXXVI. Treffen "Kernphysik", Schleching/Obb., 17-24 February 2005 Vortrag zum Thema: Hochleistungsdatenverarbeitung."— Presentation transcript:

1 CBM at FAIR Walter F.J. Müller, GSI, Darmstadt XXXVI. Treffen "Kernphysik", Schleching/Obb., February 2005 Vortrag zum Thema: Hochleistungsdatenverarbeitung in der Kern- und Teilchenphysik New challenges for Front-End Electronics, Data Acquisition and Trigger Systems

2 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 2 Outline CBM (very briefly)  observables  setup FEE/DAQ/Trigger  requirements  challenges  strategies

3 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 3 CBM at FAIR SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Compressed Baryonic Matter Experiment

4 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 4 Mapping the QCD Phase Diagram RICH/LHC:  explore μ B → 0  travel back to the early universe CBM  explore μ B → max  travel into a neutron star  10 – 45 AGeV  2 nd generation experiment  penetrating probes  rare probes

5 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 5 CBM Physics Topics and Observables In-medium modifications of hadrons  onset of chiral symmetry restoration at high ρ B  measure: , ,   e + e - (μ + μ - ) open charm: D 0, D ± Strangeness in matter  enhanced strangeness production  measure: K, , , ,  Indications for deconfinement at high ρ B  anomalous charmonium suppression ?  measure: D 0, D ± J/   e + e - (μ + μ - ) Critical point  event-by-event fluctuations  measure: π, K Good e/π separation Low cross sections → High interaction rates → Selective Triggers Hadron identification Vertex detector

6 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 6 CBM Setup  Radiation hard Silicon pixel/strip detectors in a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 10 5  Hadron identification: RPC, RICH  Measurement of photons, π 0, η, and muons: ECAL

7 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 7 CBM and HADES All you want to know about CBM: Technical Status Report (400 p) now publicly available

8 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 8 Meson Production in central Au+Au W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) MHz interaction rate needed for A GeV SIS300

9 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 9 Open Charm Detection Example: D 0  K -  + (3.9%; c  =  m) reconstruct tracks find primary vertex find displaced tracks find secondary vertex target first two planes of vertex detector few 100 μm 5 cm high selectivity because combinatorics is reduced

10 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 10 A Typical Au+Au Collision Central Au+Au collision at 25 AGeV: URQMD + GEANT 160 p 170 n 360    0 41 K + 13 K - 42 K 0  10 7 Au+Au interactions/sec  10 9 tracks/sec to reconstruct for first level event selection

11 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 11 CBM Trigger Requirements In-medium modifications of hadrons  onset of chiral symmetry restoration at high ρ B  measure: , ,   e + e - open charm (D 0, D ± ) Strangeness in matter  enhanced strangeness production  measure: K, , , ,  Indications for deconfinement at high ρ B  anomalous charmonium suppression ?  measure: D 0, D ± - J/   e + e Critical point  event-by-event fluctuations  measure: π, K offline assume archive rate: few GB/sec 20 kevents/sec offline trigger trigger on high p t e + - e - pair trigger on displaced vertex drives FEE/DAQ architecture

12 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 12 CBM DAQ Requirements Profile D and J/Ψ signal drives the rate capability requirements D signal drives FEE and DAQ/Trigger requirements  Problem similar to B detection, like in BTeV, LHCb  Adopted approach: displaced vertex 'trigger' in first level, like in BTeV  Additional Problem: DC beam → interactions at random times → time stamps with ns precision needed → explicit event association needed Current design for FEE and DAQ/Trigger:  Self-triggered FEE  Data-push architecture

13 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 13 Conventional FEE-DAQ-Trigger Layout Detector Cave Shack FEE Buffer L2 Trigger L1 Trigger DAQ L1 Accept L0 Trigger f bunch Archive Trigger Primitives Especially instrumented detectors Dedicated connections Specialized trigger hardware Limited capacity Limited L1 trigger latency Modest bandwidth Standard hardware

14 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 14 Limits of Conventional Architecture Decision time for first level trigger limited. typ. max. latency 4 μs for LHC Only especially instrumented detectors can contribute to first level trigger Large variety of very specific trigger hardware Not suitable for complex global triggers like secondary vertex search Limits future trigger development High development cost

15 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 15 L1 Trigger Special hardware High bandwidth The way out.. use Data Push Architecture Detector Cave Shack FEE Buffer L2 Trigger L1 Trigger DAQ L1 Accept L0 Trigger f bunch Archive Trigger Primitives Especially instrumented detectors Dedicated connections Specialized trigger hardware Limited capacity Limited L1 trigger latency Modest bandwidth Standard hardware f clock L2 Trigger Time distribution

16 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 16 L1 Trigger Special hardware High bandwidth The way out... use Data Push Architecture Detector Cave Shack FEE DAQ Archive f clock L2 Trigger

17 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 17 L1 Select Special hardware High bandwidth The way out... use Data Push Architecture Detector Cave Shack FEE DAQ Archive f clock L2 Select Self-triggered front-end Autonomous hit detection No dedicated trigger connectivity All detectors can contribute to L1 Large buffer depth available System is throughput-limited and not latency-limited Modular design: Few multi-purpose rather many special-purpose modules Use term: Event Selection

18 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 18 CBM DAQ and Online Event Selection More than 50% of total data volume relevant for first level event selection Aim for simplicity Simple two layer approach: 1. event building 2. event processing needed for D needed for J/μ usefull for J/μ STS, TRD, and ECAL data used in first level event selection

19 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 19 Logical Data Flow Concentrators: multiplex channels to high-speed links Time distribution Buffers Build Network Processing resources for first level event selection structured in small farms Connection to 'high level' selection processing

20 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 20 Bandwidth Requirements Data flow: ~ 1 TB/sec 1 st level selection: ~ operation/sec Data flow: few 10 GB/sec to archive: few 1 GB/sec Moore helps Gilder helps

21 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 21 L1 Event Selection Farm Layout Current working hypothesis: CPU + FPGA hybrid system (proviso follows) Use programmable logic for cores of algorithms Use CPU for the non-parallelizable parts Use serial connection fabric (links and switches) Modular design (only few board types)

22 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 22 FPGA – Basic Building Block CLK F3 F2 F1 F0 XQ X D C Q LUT CLB Look-up Table just a 4x1 RAM D Flip-Flop Universal logic gate Elementary storage unit CLB = Configurable Logic Block

23 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 23 FPGA – Putting it together CLB PSM Configurable Logic Block Wiring Programmable switch matrix I/O blocks Modern FPGA's: > LUT 500 MHz

24 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 24 Algorithms Performance of L1 feature extraction algorithms is essential  critical in CBM: STS tracking + vertex reconstruction TRD tracking and Pid Look for algorithms which allow massive parallel implementation  e.g. Hough Transform Tracker needs lots of bit level operations, well suited for FPGA  Caveat: simulation on normal CPU quite time consuming.... Co-develop tracking detectors and analysis algorithms  L1 tracking is necessarily speed optimized → more detector granularity and redundancy needed  Aim for CBM: Validate final hardware design with at least 2 trackers suitable for L1

25 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 25 Interim Summary Event definition has changed:  now based on time stamps and time correlation Role of DAQ has changed:  DAQ is simply responsible to transport data from producers to consumers Role of 'Trigger' has changed:  filter events delivered by DAQ  'Online Event Selection' is better term System aspects:  'online' – 'offline' boundary blurs  more COTS ( commercial off the shelf ) components  much more modular system  much more adaptable system This is emerging technology in HEP, though baseline for ILC However: being used since many years in nuclear structure

26 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 26 Moore – quo vadis ? Will price/performance of computing continue to improve ?  What are limits of CMOS technology ?  Where are the markets ? What are market forces ? Technology  most of the gain comes from architecture anyway  conventional designs, especially x86, reach their limits Markets  end of the metal-box PC age → Laptops + PDA + all kind of dedicated boxes (Video, Games)  end of the binary compatibility age → intermediate code + 'Just in Time' Compilers (JIT) There is life after Intel x86 A lot of architectural innovation ahead

27 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 27 BlueGene vs Cell Processor CPU Cache Mem IO MemSPEMemSPE MemSPEMemSPE MemSPEMemSPE MemSPEMemSPE CPU Cache IO Mem BlueGene: 121 mm 2 ; 130 nm 2.8/5.6 DP GFlop STI Cell: 221 mm 2 ; 90 nm 256 SP GFlop 30 DP GFlop 25 GB/sec mem 78 GB/sec IO Finally presented on ISSCC 2005 SPE = Synergistic Processing ElementInternational Solid-State Circuit Conf.

28 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 28 BlueGene vs Cell Processor Developed by Sony, Toshiba and IBM Market: VIDEOGAMES Budget: 500 M$ Developed by IBM Market: national security science Budget: ~100 M$ High performance computing is driven now by embedded systems (games, video,....) → Science is a spin-off, at best...

29 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 29 Game Processors as Supercomputers ? Slide from CHEP'04 Dave McQueeney IBM CTO US Federal

30 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 30 CPU and FPGA paradigms merge Register ALU Control Wide Register ALU Control ALU Wide Register ALU Control ALU Conventional CPUSIMD (single instruction – multiple data) CPU Configurable Instruction Set CPU arithmetic resources configurable connection fabric PSM

31 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 31 Configurable Instruction Set Processor Example Stretch S5xxx  Hybrid design: conventional fixed instruction set part plus configurable instruction set part  C/C++ compiler analyses the kernel of algorithms generates custom instruction set generates code to use it  The promise easy of use of C/C++ performance of an FPGA Fabric is the keyword interconnected resources Stretch S5 engine

32 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 32 CPU and FPGA paradigms merge configurable logic CPU configurable logic CPU FPGA industry world view Processor industry world view Unclear what the most suitable architecture will be The general trend however will produce a lot of innovation in the years to come Essential will be availability of efficient development tools Moore will go on ! There are the technologies There are the markets Architectural changes ahead

33 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 33 Summary Self-triggered FEE:  autonomous hit detection, time-stamping with ns presision  sparsification, hit buffering, high output bandwidth High bandwidth event building network  to cope with few 100 MHz interaction rate in p-p, p-A  likely be done in time slices or event slices L1 processor farm  feasible with PC + FPGA + Moore (needed 2014)  but look beyond todays PC's and FPGA's Efficient algorithms (10 9 tracks/sec)  co-design of critical detectors and tracking software Quite different from the current LHC style electronics Substantial R&D needed RII3-CT

34 17-24 February 2005 XXXVI. Treffen Kernphysik, Schleching/Obb., Walter F.J. Müller, GSI 34 The End Thanks for your attention

35 CBM Collaboration : 39+ institutions, 14+ countries China: Hua-Zhong Univ., Wuhan Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna LTP, JINR Dubna MEPhi, Moskau Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Uni. Ukraine: Shevshenko Univ., Kiev Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest membership applications in italic


Download ppt "CBM at FAIR Walter F.J. Müller, GSI, Darmstadt XXXVI. Treffen "Kernphysik", Schleching/Obb., 17-24 February 2005 Vortrag zum Thema: Hochleistungsdatenverarbeitung."

Similar presentations


Ads by Google