Download presentation

Presentation is loading. Please wait.

Published byKarissa Savell Modified over 3 years ago

1
// RF Transceiver Design Condensed course for 3TU students Peter Baltus Eindhoven University of Technology Department of Electrical Engineering 20070607 / 20070608

2
// Agenda Day 1 Thursday June 7 th 2007 10:00-11:15 lecture 1 Systems, specs Technologies & FOMS Architectures + finding subblock parameters 11:15-12:00 instruction 1 12:00-13:00 lunch 13:00-14:15 lecture 2 Amplifiers & Mixers 14:15-15:30 instruction 2 15:30-16:30 lecture 3 Oscillators & Filters 16:30-17:00 instruction 3

3
// Agenda Day 2: Friday June 8 th 2007 9:00-10:15 lecture 4 Block interaction: –substrate xtalk –coupling of inductors –Packaging –thermal effects –multi-mode –non-linear input/output impedance 10:15-11:00 instruction 4 11:00-12:00 lecture 5 Multiple-antenna OFDM systems: overview, system build-up, digital signal processing 12:00-13:00 lunch 13:00-14:00 lecture 6 Influence and digital compensation of Phase Noise and Carrier frequency offset 14:00-14:30 instruction 14:30-15:30 lecture 7 Influence and digital compensation of IQ imbalance and nonlinearities, generalized error model 15:30-16:00 instruction

4
// Lecture 1: RF Systems & Specifications

5
// Instruction

6
// Question 1 Design a simple mass-market WLAN system: - f = 5..6GHz - BW = 20MHz - SNRmin = 11dB - Range = 100m LOS Find a consistent (but not unique) set of parameters: - Transmit power - Receive noise figure - Receiver IP3 - Receiver selectivity Make any reasonable assumption required

7
// Question Calculate required transmit power if: Frequency = 2.5GHz range = 10m sensitivity = -70dBm omnidirectional antennas LOS

8
// Solution PRX=-70dBm GRX= GTX=0dB Wavelength=0.12m PTX =0.11mW Low power! Cheap AA NiCd battery: 1.5Wh => 14000 hr!

9
// Question: -10 dBm frequency 2 -40 dBm P out What is IIP2 and OIP2 assuming a power gain of 7 dB

10
// Two signals at the input of a non-linear system Yield a lot! of other frequency components ω1ω1 ω2ω2

11
// A forest of frequencies

12
// Graphical overview of inter-modulation products

13
// Calculation of IP2 IIP2: input power where wanted power = second order power (extrapolated point).

14
// Formula for OIP2 (small signal extrapolation!) P fund,out ΔP frequency P out (dBm) 2

15
// Answer The input IIP2 is OIP2 divided by the power gain (so -7 dB)

16
// Calculation of IP3 IIP3: input power where wanted power = the third order power (extrapolated point).

17
// Formula for OIP3 (when not in compression) P fund,out ΔP freq. P out (dBm) 2

18
// RX NF Exercise: Calculate RX minimum NF for: Psensitivity = -70dBm BW = 20MHz SNRmin=15dB

19
// RX NF Solution: P RX =-70dBm BW=20MHz SNR min 15dB Equivalent input noise: -85dBm Equivalent input noise density: -158dBm/Hz Thermal noise density (kT) : -174dBm/Hz Total transceiver NF=16dB Note: need to include losses for antenna filter, switches, antenna loss (total e.g. 3dB) and baseband implementation loss to get RX IC NF

20
// RX ADC Exercise Bandwidth = 1MHz max signal = -20dBm min signal = -70dBm SNRmin = 11dB Calculate ADC minimum sampling rate & minimum # bits assuming perfect analog channel selectivity but no AGC, and ADC noise contribution less than 1dB

21
// RX ADC Solution: Bandwidth = 1MHz, sample rate >=2Msps Resolution: max signal = -20dBm min signal = -70dBm equivalent input noise = -81dBm equivalent ADC input noise = -91dBm Dyn range: 71dB Effective resolution: >= 12bit

22
// Lecture 2: Amplifiers & Mixers

23
// Instruction

24
// Question 1 For a simple mass-market WLAN system: - select a (very simple) LNA topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements

25
// Question 2 For a simple mass-market WLAN system: - select a (very simple) Mixer topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements

26
// Lecture #3: VCOs and Filters

27
// Instruction

28
// Question 1 For a simple mass-market WLAN system: - select a (very simple) VCO topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements

29
// Question 2 For a simple mass-market WLAN system: - select a (very simple) IF filter topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements

30
// The End … … for today! Thanks for your attention ! Tomorrow: Block interaction – or – Why it still doesn’t work

31
// Lecture #4: Why it still doesn’t work

32
// Instruction

33
// Question Design: -Floorplan -Pin-out -For a 4x4 MIMO WLAN transceiver for the mass- market

34
// The End … … for my contribution today … Thanks for your attention !

Similar presentations

OK

Amplifiers Amplifier Parameters Gain = Po/Pi in dB = 10 log (Po/Pi)

Amplifiers Amplifier Parameters Gain = Po/Pi in dB = 10 log (Po/Pi)

© 2018 SlidePlayer.com Inc.

All rights reserved.

By using this website, you agree with our use of **cookies** to functioning of the site. More info in our Privacy Policy and Google Privacy & Terms.

Ads by Google

Ppt on gujarati culture society Ppt on sanskrit grammar for class 10 Topics for ppt on technology Ppt on traffic light controller project 64 Ppt on self development preschool Ppt on job rotation policy Ppt on different solid figures for kids Ppt on grease lubrication tubing Ppt on history of badminton games Ppt on swine flu 2015