Download presentation

Presentation is loading. Please wait.

1
Ellipses Date: ____________

2
**Ellipses Standard Equation of an Ellipse Center at (0,0) x2 a2 y2 b2 +**

= 1 (a, 0) x O (0, –b)

3
**Horizontal Major Axis Vertical Major Axis Co-Vertices Vertices**

a2 < b2 a2 > b2

4
For example, An ellipse is the set of all points P in a plane such that the sum of the distances from P to two fixed points, F1 and F2, called the foci, is a constant. P P P F1 F2 2a F1P + F2P = 2a

5
**Horizontal Major Axis:**

y x2 a2 y2 b2 + = 1 (0, b) (a, 0) (–a, 0) a2 > b2 a2 – b2 = c2 x O F1(–c, 0) F2 (c, 0) (0, –b) length of major axis: 2a length of minor axis: 2b Distance from midpoint and foci: c

6
**length of major axis: 2b length of minor axis: 2a**

Vertical Major Axis: y x2 a2 y2 b2 + = 1 (0, b) F1 (0, c) b2 > a2 (–a, 0) (a, 0) x O b2 – a2 = c2 F2(0, –c) length of major axis: 2b length of minor axis: 2a (0, –b) Distance from midpoint and foci: c

7
Write an equation of an ellipse in standard form with the center at the origin and with the given vertex and co-vertex. (4,0), (0,3) Vertices : (4,0) Co-Vertices: (0,3) (-4,0) (0,-3) So a = 4 So b = 3 a² = 16 b² = 9 x2 16 y2 9 + = 1

8
**Find an equation of an ellipse for the given height and width with the center at (0,0)**

h = 32 ft, w = 16 ft 32 ft Distance b is from the center is 16 16 ft Distance a is from the center is 8 x2 64 y2 256 + = 1 a = 8 a² = 64 b = 16 b² = 256

9
**Find the foci and graph the ellipse.**

x2 25 y2 9 + = 1 x y a2 = 25 b2 = 9 a = ±5 b = ±3 (0, 3) 25 – 9 = c2 (–5, 0) (–4, 0) (5, 0) 16 = c2 (4, 0) ±4 = c (0,-3)

10
**Graph the ellipse. Find the foci.**

x2 9 y2 25 + = 1 x y a2 = 9 b2 = 25 (0, 5) a = ±3 b = ±5 (0,4) (–3, 0) (3, 0) b2 – a2 = c2 25 – 9 = c2 (0,-4) 16 = c2 ±4 = c (0,-5)

11
**Write an equation of an ellipse for the given foci and co-vertices.**

Foci: (±5,0), co-vertices: (0,±8) Horizontal axis Since c = 5 and b = 8 c² = 25 and b² = 64 x2 a2 y2 b2 + = 1 a2 – b2 = c2 a2 – 64 = 25 + 64 + 64 x2 89 y2 64 + = 1 a2 = 89

12
**Translated Ellipses Standard Equation of an Ellipse Center at (h,k)**

(x – h)2 a2 (y – k)2 b2 + = 1 y (h, k+b) (h+a, k) (h,k) (h, k–b) (h–a, k) x

13
**Write an equation of the translation.**

Center = (2,-5) h = 2 k = -5 Horizontal major axis of length 12, minor axis of length 8. Length of major axis is 2a Length of minor axis is 2b 2a = 12 2b = 8 a = 6 b = 4 a2 = 36 b2 = 16 (x – 2)2 36 (y + 5)2 16 + = 1 (x – h)2 a2 (y – k)2 b2 + = 1

14
**Find the foci for the ellipse.**

4x2 + 9y2 – 16x +18y – 11 = 0 4x2 – 16x + 9y2 + 18y = 11 4(x2 – 4x + ____) + 9(y2 + 2y + ___) =11 4 1 +16 +9 4(x – 2)2 + 9(y + 1)2 = 36 36 (x – 2)2 9 (y + 1)2 4 + = 1

15
**(x – 2)2 9 (y + 1)2 4 = 1 Foci = (2 + 2.2,-1) Foci = (2 – 2.2,-1)**

Center = (2,-1) Foci = (4.2,-1) and = (-0.2, -1) a2 = 9 b2 = 4 a2 > b2 Horizontal Axis a2 – b2 = c2 9 – 4 = c2 5 = c2 ±2.2 ≈ c

Similar presentations

OK

Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.

Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on personality development and grooming Ppt on diode circuits and rectifiers Ppt on formal education define Png to ppt online converter Ppt on being creative youtube Ppt on network switching hub Signal generator and display ppt on tv Ppt on viruses and antivirus download Ppt on limits and derivatives ppt Ppt on etiquettes meaning