Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dan Dascalu, INCD-Microtehnologie

Similar presentations


Presentation on theme: "Dan Dascalu, INCD-Microtehnologie"— Presentation transcript:

1 Dan Dascalu, INCD-Microtehnologie
Facilitatile de micro- si nanotehnologii: un teren fertil pentru inovare Dan Dascalu, INCD-Microtehnologie

2 Structura prezentarii
Partea I-a Conceptul de “centru deschis” de micro- si nanotehnologii (MNT) Partea II-a (in limba engleza) IMT si facilitatea IMT-MINAFAB

3 Mesajul acestei comunicari:
Domeniul micro- si nanotehnologiilor (MNT) este propice inovarii, putand furniza noi produse si noi tehnologii pentru o gama larga de industrii; Pentru a trece de la cercetare la produs: este necesara o baza tehnologica pentru experimentare si pentru productia ulterioara; Este dificil pentru firmele mici sa isi creeze ele insele o astfel de baza experimentala si atunci devin utile centrele MNT “deschise” care asigura infrastructura tehnologica organizata sub forma unei ”facilitati” care asigura o diversitate de servicii.

4 Formularea problemei (1)
In Romania s-a investit si se investeste in continuare mult in infrastructura de cercetare, in principal in echipamente si aparatura. Aceasta permite ridicarea nivelului cercetarii, inclusiv al cercetarii aplicate si al dezvoltarii tehnologice. In ce masura aceste investitii in infrastructura creaza premize favorabile pentru inovare, pentru cresterea impactului cercetarii in economie? Este facilitata – dar nu garantata - abordarea unor domenii de inalta tehnologie, care – in principiu – au un potential inovativ mai mare; Exista scheme de finantare/facilitare a investitiilor si pentru firmele private, care contribuie la cresterea sansei de inovare

5 Formularea problemei (2)
Subiecte abordate sporadic sau …………deloc: Prioritati, nise etc. Masa critica Factorul timp Ce se intampla in tarile avansate? Inovare intr-un “sistem deschis” Ecosisteme de inovare, orientate high-tech Actori diferiti (universitati, centre de cercetare, firme) concentrati intr-un pol tehnologic Ecosisteme virtuale (platformele tehnologice europene)

6 Formularea problemei (3)
Cum se finanteaza inovarea? Exista finantare din surse publice, private sau mixte care pune impreuna colectivele CD si industria in proiecte comune; Finantarea publica faciliteaza inovarea si prin Generarea de noi cunostiinte; Educatie si instruire; Infrastructuri de transfer de tehnologie si inovare, inclusiv parcuri tehnologice, incubatoare de afaceri Facilitarea accesului la infrastructura experimentala

7 Formularea problemei (4)
De la cercetarea aplicata la noi tehnologii si noi produse (asa-numita “vale a mortii”/death valley): cheltuieli mai mari cu un ordin de marime. IMM-urile nu au, de regula, posibilitatea de a investi. De fapt, nu este obligatoriu ca ele sa “posede” echipamente, exista alte solutii: Pot inchiria echipamente (de regula intr-un parc sau intr-un centru dedicat); Pot plati accesul la echipamentele unui centru MNT; acces direct (nu doresc o impartire a drepturilor IP).

8 Micro- si nanotehnologii
Micro- si nanotehnologiile (MNT) sunt extrem de diverse si acopera o gama larga de aplicatii, vezi platformele tehnologice europene: ENIAC (nanoelectronica); EPoSS (sisteme inteligente) PHOTONICS 21 (fotonica) Nanomedicine (nanomedicina) MINAM, NanoFutures (industriile traditionale); In unele cazuri echipamentele folosite in activitati CD pot asigura si o microproductie; Centrele MNT experimentale care sunt “deschise” industriei sunt foarte frecvente in SUA si in Marea Britanie

9 Centrele MNT au o activitate complexa
Pe orizontala Nu numai inovare, dar si cercetare interdisciplinara, educatie si instruire (triunghiul cunoasterii) Pe verticala O varietate de activitati pentru firme: acces direct la echipamente, servicii tehnologice, cercetare comuna, executie de “matrite”, executie si/sau testare de prototipuri, microproductie Ca urmare, astfel de centre sunt elemente esentiale ale unui “sistem deschis de inovare”. Intr-un astfel de sistem exista o abundenta de resurse: oameni, idei, parteneriate (adica tocmai “active intangibile” caracteristice “economiei bazate pe cunoastere”). Proprietatea asupra infrastructurii experimentale si – pana la un punct – chiar proprietatea intelectuala sunt mai putin importante.

10 IMT-MINAFAB (inaugurat in aprilie 2009)
IMT centre for Micro- and NAnoFABrication Este un centru de micro- si nanotehnologie, care este destinat cercetarii in domeniile: micro- si nanosisteme, micro- si nanoelectronica, tehnologii convergente (micro-nano-bio-info), nanomateriale. Caracterul acestui centru este preponderent experimental, dar nu lipsesc simularea si proiectarea asistata de calculator. Este un centru deschis care sustine cercetarea stiintifica multidisciplinara, dezvoltarea tehnologica, inovarea, dar si activitatile de educatie si instruire. De aceea termenul de „micro- si nanofabricatie” din denumire trebuie privit intr-un sens mult mai larg: nu este vorba de productie pur si simplu, ci de un centru suport pentru activitati variate (activitatile de microproductie sunt si ele fezabile). Exista un sistem care asigura accesul beneficiarilor din exterior la aceste facilitati.

11 IMT-MINAFAB Facilitatile experimentale permit nu numai structurarea (fabricatia, cu sensul de realizare fizica), ci si proiectarea, caracterizarea fizica, testarea functionala si probe de fiabilitate. Pe partea de fabricatie trebuie remarcata posibilitatea de realizare a mastilor, de aliniere a plachetelor etc. caracteristice acestui domeniu. Astfel, este posibila parcurgerea ciclului de cercetare-dezvoltare de la proiectare-modelare-simulare, pana la realizarea unui demonstrator, model experimental, prototip si testarea acestuia. Echipamentele si instrumentele sunt operate de personal calificat, cu experienta in utilizarea acestora. Este deosebit de important faptul ca se asigura conditii de functionare adecvate in spatii tip camera alba (clase superioare de curatenie, temperatura si umiditate controlate, fluide si gaze pure, etc.), la stardarde ridicate. Nu este vorba de o simpla „camera curata” (un spatiu „desprafuit”, intalnit in diverse domenii), ci de o adevarata „camera alba” in sensul folosit in micro- si nanotehnologie. Info:

12 IMT-MINAFAB IMT-MINAFAB prezinta o grupare unica la nivel national de instalatii, echipamente, instrumente, sisteme de calcul, personal si expertiza asociata, care se constituie intr-o platforma tehnologica moderna pentru Cercetare-Dezvoltare-Inovare in micro- si nanotehnologii. Subliniem deasemenea ca IMT-Bucuresti este singurul actor la nivel national care dispune de o baza experimentala extinsa in cercetarea si dezvoltarea de micro- si nanosisteme integrate (prin imbinarea proceselor si tehnologiilor de tip: proiectare/realizare de masti, micro-nanolitografie, corodari umede si uscate, depuneri si structurari controlate de materiale anorganice sau organice cu precizie nanometrica, interfatari si caracterizari electronice, etc.). Dotarile puse la dispozitie prin intermediul IMT-MINAFAB sunt comparabile cu cele ale altor centre MNT din Europa.

13 Centre MNT similare in Europa
Danemarca - National Center for Micro- and Nanofabrication (DTU Danchip) Elvetia - Center of MicroNano Technology (CMI) Finlanda - Micro- and Nanotechnology Centre (Oulu) Franta - Lyon Institute of Nanotechnology -NanoLyon Technological Platform, Germania - Zentrum für Mikround Nanotechnologien (ZMN) - Marea Britanie - The London Centre for Nanotechnology (LCN) Spania - Centro Nacional de Microelectrónica

14 Sisteme europene de servicii, retele
EU a finantat si finanteaza proiecte prin care consortii public-private asigura servicii tehnologice: Sistemul EUROPRACTICE (microelectronica si microsisteme). Si IMT a facut parte din consortiul INTEGRAMplus, asigurand servicii dezvoltate prin proiectul integrat “Multi-domain platforms for integrated micro-nano technology systems – Service Action”, IP, Prioritatea 2 -IST, Contract nr ( ), Coordonator: QinetiQ Ltd, UK (cea mai mare firma de microsisteme din Europa, fostul Royal Radar Establishment, Malvern, UK). EUMINA-fab, consortiu paneuropean (EU micro and nanofabrication), proiect

15 Parcul stiintific si tehnologic de micro si nanotehnologii MINATECH-RO
Consortiu format din IMT si UPB Demararea (2005) procesului de constituire a unei infrastructuri tehnologice competitive. Procesul a dus la rezultate vizibile in 2009 (IMT-MINAFAB) si continua in ritm sustinut in perioada Gazduirea unor firme cu care se colaboreaza in activitati CDI, inclusiv servicii Nota: Colaborarea cu UPB (in consortiul care a format parcul) este inca sporadica.

16 Centrul de transfer tehnologic in microinginerie CTT-Baneasa:
Retea de transfer de cunostiinte in MICRO-NANO, formata din circa 60 grupuri de cercetare si firme din Romania Diseminarea de informatii Organizarea de diverse evenimente de informare si de brokeraj, de ex. in colaborare cu CCIB. Participare MINATUSE, retea in EUREKA Nota: Ce asteapta IMT de la sistemul de inovare? O colaborare pe directia ”micro-nano” in cadrul ARoTT Colaborare in cadrul proiectului de studii prospective NANOPROSPECT (Nanotehnologiile in Romania), care va fi lansat la 20 octombrie 2010

17 Infrastructuri IMT importante pentru inovare
Infrastructura de servicii asigurata de IMT-MINAFAB Infrastructura TTI, prin: CTT-Baneasa Parcul MINATECH-RO (la care IMT este principalul “actionar”) Cele trei infrastructuri au activitati complementare

18 Partea II-a IMT and IMT-MINAFAB

19 What is specific today for IMT?
Orientation towards convergence/integration of technologies (not purely “nano”). This is a key approach for future/emerging technologies. Multidisciplinary approach, including partnership with other institutes (various fields of engineering, physics, chemistry) and universities Integrating research with innovation and education through a specific infrastructure 19

20 Main fields of “nano” R&D in the strategy of IMT
Nanoelectronics (especially in the More than Moore part, i.e. micro- and nanosystems) Nanophotonics Nanobiotechnology/nanomedicine (e.g. microarray techniques, lab-on-chip, nanofluidics) Nanomaterials (a new centre of carbon-based nanomaterials, structural funding) At the moment, just a few centres of this kind exist in the world, none in Europe (note the fact that Sweden is involved in the activity of an Asian Centre). 20

21 Orientation towards nanofabrication
E-beam lithography (since 2006, and an advanced system – since 2008) Dip pen lithography (since 2009) Chemical Vapour Deposition (CVD) techniques for growing nanolayers (planned for 2011) Molecular Beam Epitaxy (MBE) and other techniques (Atomic Layer Deposition, ALD) for growing carbon-based nanomaterials (planned for 2013)   Full cycle: from computer-aided analysis/design, through mask fabrication, device fabrication and characterization, to reliability testing. 21

22 Electron beam lithography and nanoengineering workstation
e_Line Raith, Germany high resolution FE SEM direct writing Electron Beam nanoLithography (EBL) nanomanipulation: e-beam induced deposition (EBID), e-beam induced etching (EBIE) Special tools Stage: laser interferometer; 100mmx100mm; 2nm resolution Minimum line width: 10-20nm Stitching accuracy: 40nm 22

23 Special tools e_Line High aspect ratio (12:1) structures in PMMA
Diffractive Optical Element (DOE) for photonics applications Photonic crystals in PMMA on silicon for near IR applications Special tools Mix-and-match lithography for 300 nm fingers used for SAW devices (Cooperation IMT Bucharest – IESL FORTH ) Mix-and-match lithography for biomedical applications: optical lithography (left), combined with EBL (right) 23

24 Special tools Research Topics Cooperation e_Line
Nanolithography with sub 20 nm resolution; Three-dimensional nanostructures; CNT based interconnections for next-generation integrated circuits CNT based nanodevices SAW devices with nanometer interdigitated electrodes; Optical devices, holograms, micro lenses, gratings Development of Nanodevices using E-beam induced deposition and etching Development of circuits for communications based on photonic crystals Special tools Cooperation FP7 CATHERINE Project FET- STREP: Carbon nAnotube Technology for High-speed nExt-geneRation nano-InterconNEcts INFN- Roma MIMOMEMS UCL Inst. Biodinamica INCDFLPR Zoom - Soft SRL Structure obtained using conventional lithography and EBID for 4-probe measurements of electrical properties of a polymer nanowire (Cooperation IMT Bucharest – UCL) 24

25 Dip Pen Nanolithography Writer
NSCRIPTOR NanoInk, Inc., USA Scanning probe lithography technique for patterning in nanometre range. Direct writing method that can use molecular and biomolecular “inks” on a variety of substrates: polymers, sol-gel precursors, nanopowder, complex molecules, quantum dots etc. Pattern width down to 30 nm. Special tools 25

26 Infrastructures promoting cooperation in research
Centre of Excellence MIMOMEMS (RF and Opto MEMS), financed by the European Commission ( ); also involved in other FP7 projects. Associate European Laboratory (LEA) on Smart M/NEMS (since December 2009): - With LAAS/CNRS, Toulouse (France) and FORTH, Heraklion (Greece) - IMT is in charge with nanoscale microwave devices Centre of Nanotechnologies (CNT-IMT) under the aegis of the Romanian Academy, an interdisciplinary group of R&D laboratories, involved in national and European projects - a cluster of laboratories for nanostructuring and nanocharacterization, jointly exploited with the MIMOMEMS laboratories for optical characterization. 26

27 Experimental laboratories in the Centre of Nanotechnologies from IMT
Experimental laboratory for “Microarrays” – NanoBioLab Scanner microarray (GeneTAC UC4) Ploter microarray (GeneMachines OmniGrid Micro) Experimental laboratory for EBL/SEM – NanoScaleLab Vega II LMU Thermionic Scanning electron Microscope + Pattern Generator (Raith Elphy Plus). Experimental laboratories in the Centre of Nanotechnologies from IMT (CNT-IMT) Experimental laboratory for surface spectroscopy PARSTAT 2273 Impedance Spectrometer TraceLab Electrochemical Potentiostat Scanning Electrochemical Microscope Experimental laboratory SEM/FEG FEG-SEM Nova™ NanoSEM 630 Experimental laboratory for e-line work station Electron beam lithography and nano-engineering workstation- Raith e_Line Experimental laboratory for X-Rays diffraction SmartLab X-ray Thin film Difraction System Experimental laboratory SPM Scanning Probe Microscope NTEGRA Aura – NT-MDT Experimental laboratory for nanofluidics (to be developed soon) Experimental laboratory for nanoparticles Semiconductor Characterization System with Manual Probe Station SCS/C/ Keithley, EP6/ Suss-MicroTec DelsaNano Zeta Potential and Submicron Particle Size Analyzer; Fluorescence spectrometer; Dip pen nanolithography Laboratory Dip Pen Nanolithography System (NanoInk Inc., USA)

28 Projects from structural funding
Nanofluidics for biomedical applications, IMT research project financed ( ) from structural funding – economic competitiveness. Postdoctoral studies in Micro- and nanotechnologies, IMT project financed ( ) from structural funding – human resources. 35 research grants, multidisciplinary topics Partnership with National R&D Institute for Condensed Matter, Timisoara; National R&D Institute for Laser Physics, Plasma and Radiation, Bucharest; Research Institute for Physical Chemistry, Bucharest (Romanian Academy) etc. A centre of research in carbon-based nanomaterials (CENASIC). An investment of 5 million euro…..expected launching of a new project financed from structural funding – economic competitiveness. 28

29 What about innovation? Products? Technologies? Commercialization?
Still……….. What about innovation? Products? Technologies? Commercialization?

30 Innovation in high-tech areas
Cooperation in international consortia Cooperation with international companies e.g. Public - Private Partnership (PPP) in nanoelectronics ENIAC – JU Illustration: Recent results obtained by IMT in the field of GHz acoustic devices based on wide band-gap (WBG) semiconductor materials

31 Top view with top illumination Top view with bottom illumination
6.3 GHz Film Bulk Acoustic Resonator Structures Based on a Gallium Nitride/Silicon Thin Membrane - 340 nm (GaN) + 200nm (buffer) thin membrane supported FBAR structure based on silicon micromachining - 50nm thin Mo metallization GaN/Si wafers from NTT AT Japan Top view with top illumination Top view with bottom illumination A. Müller, D. Neculoiu, G. Konstantinidis et al. “6.3 GHz Film Bulk Acoustic Resonator Structures Based on a Gallium Nitride/Silicon Thin Membrane” Electron Devices Letters, vol 30, no 8, August 2009, pp IMT- FORTH

32 Series connection of SAWs (detail) (w=250nm)
AlN/Si based SAW structure working at 5 GHz Fingers and interdigits 250nm wide AlN layer 1.4 µm thin D. Neculoiu, A. Müller, G. Deligeorgis, A. Dinescu, A. Stavrinidis, D. Vasilache, A. Cismaru, G. E. Stan and G. Konstantinidis, “AlN on silicon based Surface Acoustic Wave resonators operating at 5 GHz” Electron. Lett. 45, 1196, 2009 Series connection of SAWs (detail) (w=250nm) IMT-FORTH-NIMP The AlN layer was deposited by magnetron sputtering in NIMP -Bucharest

33 SAW devices on GaN/Si ( 2010)
IMT- FORTH -successful nanolithography on GaN ( fingers and interdigits 300nm and 200nm wide have been obtained) -operating frequencies close to 4 GHz for 300 nm finger width and 5.6 GHz for 200nm finger width have been obtained A Muller,D Neculoiu, G Konstantinidis , A Dinescu et al. "SAW devices manufactured on GaN/Si for frequencies beyond 5 GHz,“Electron Devices Lett. December 2010, DOI /LED ,

34 WBG semiconductor technologies will be developed in the CENASIC facility
Classical technologies for SAW and FBAR devices are based on quartz, lithium niobate, lithium tantalite (SAW) and ZnO (FBAR). These technologies can ensure resonance frequencies under 2 GHz for the acoustic devices The WBG technologies, GaN/SiC, AlN/SiC, developed in the last years and more recently GaN/Si and AlN/Si are typical semiconductor technologies, offering the compatibility with MEMS technologies, the use of nanolithography as well as the possibility of monolithic or hybrid integration with other circuit elements (e.g. HEMT transistors) These materials and technologies can increase the frequency performances of SAW and FBAR structures as necessary in communication as well as in sensor applications The sub-micron thickness of the GaN or AlN membrane in FBAR devices can increase their operating frequency The use of nanolithography to fabricate the interdigitated transducer (IDT) of the SAW structures will result an increasing of operating frequency

35 Innovative potential ……..
…….for the automotive field (see the next slides). Plenty of info at: Automotive Workshop: a satellite event to CAS 2010 (11-13 October 2010) Title:  New trends in automotive electronics and semiconductors Organizers: Infineon Technologies Romania and IMT Sunday, 10th of October, 2010, 10:00-17:30 Hotel Sinaia, Sinaia, See

36 Exhaust gas sensor based on GHz SAW/FBAR structures
Sensor principle: Shifting of resonance frequency as function of adsorbed gas mass SAW Mass sensitivity of the SAW chemical sensors: FBAR vP – phase velocity of the wave mode Sm is proportional with f2

37 Temperature measurement system based on GHz SAW structures
Schematic layout of a SAW sensor system at 2.5 GHz Temperature variation strains the SAW delay line chip and also changes the SAW velocity by influencing the elastic constants of the crystal substrate. These effects can be used to develop a SAW temperature measurement system, with wireless data transmission and passive sensor operation.

38 Thank you for your attention!
Further info: IMT webpage: (see also the brochure Scientific report IMT – 2009) IMT-MINAFAB webpage: (see also the brochure IMT – your reliable partner, 2009) Acknowledgements: Dr. Radu Popa, Director of the Centre for Scientific Services Eng. Ionica Miresteanu, Director of CTT-Baneasa Thank you for your attention! Prof. Dan Dascalu, CEO and President of the Board 38


Download ppt "Dan Dascalu, INCD-Microtehnologie"

Similar presentations


Ads by Google