Download presentation

Presentation is loading. Please wait.

Published byCeleste Hayne Modified over 2 years ago

1
1 ISE 311 - Ch. 30 Ch. 30: Standard Data Means the reuse of previous times. For example, predict cost of automotive repairs.

2
2 ISE 311 - Ch. 30 Advantages of Using Standard Data Ahead of Production The operation does not have to be observed. Allows estimates to be made for bids, method decisions, and scheduling. Cost Time study is expensive. Standard data allows you to use a table or an equation. Consistency Values come from a bigger database. Random errors tend to cancel over many studies. Consistency is more important than accuracy.

3
3 ISE 311 - Ch. 30 Random and Constant Errors

4
4 ISE 311 - Ch. 30 Disadvantages of Standard Data Imagining the Task The analyst must be very familiar with the task. Analysts may forget rarely done elements. Database Cost Developing the database costs money. There are training and maintenance costs.

5
5 ISE 311 - Ch. 30 Motions vs. Elements Decision is about level of detail. MTM times are at motion level. An element system has a collection of individual motions. Elements can come from an analysis, time studies, curve fitting, or a combination.

6
6 ISE 311 - Ch. 30 Constant vs. Variable Each element can be considered either constant or variable. Constant elements either occur or don’t occur. Constant elements tend to have large random error. Variable elements depend on specifics of the situation. Variable elements have smaller random error.

7
7 ISE 311 - Ch. 30 Developing the Standard Plan the work. Classify the data. Group the elements. Analyze the job. Develop the standard.

8
8 ISE 311 - Ch. 30 Curve Fitting To analyze experimental data: 1. Plot the data. 2. Guess several approximate curve shapes. 3. Use a computer to determine the constants for the shapes. 4. Select which equation you want to use.

9
9 ISE 311 - Ch. 30 Statistical Concepts Least-squares equation Standard error Coefficient of variation Coefficient of determination Coefficient of correlation Residual

10
10 ISE 311 - Ch. 30 Curve Shapes Y independent of X Y = A Determine that Y is independent of X by looking at the SE. 0 2 4 6 8 10 10 8 6 4 2 [x] [y] y=4

11
11 ISE 311 - Ch. 30 Curve Shapes Y depends on X, 1 variable Examples Others:

12
12 ISE 311 - Ch. 30 Curve Shapes Y depends on X, multiple variables Y = A + BX + CZ Results in a family of curves

13
13 ISE 311 - Ch. 30 Example Application: Walk Normal Times (min) 5 m10 m15 m20 m.0553.1105.1654.2205.0590.1170.1751.2205.0550.1105.1660.2090.0521.1045.1680.2200.0541.1080.1625.2080.0595.1200.1800.1980

14
14 ISE 311 - Ch. 30 Walk Data Scatterplot

15
15 ISE 311 - Ch. 30 Equations for Walk Data Set Walk time h =.0054 +.01D r 2 =.986σ =.0073 h Walk time h = –.01 +.014D –.00013D 2 r 2 =.989σ =.0067 h Walk timeh = –.13 +.11 (loge Distance, m) r 2 =.966σ =.012 h 1/Walk time h =.24 –.96 (1/D) r 2 =.881σ =.021 h -1

Similar presentations

Presentation is loading. Please wait....

OK

Simple Linear Regression Analysis

Simple Linear Regression Analysis

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google