Download presentation

Presentation is loading. Please wait.

Published byJada Gascon Modified over 2 years ago

1
Contents Breakup reactions of 14 Be on a proton target Inelastic scattering ( 14 Be) One-neutron removal reaction ( 13 Be) Contents Breakup reactions of 14 Be on a proton target Inelastic scattering ( 14 Be) One-neutron removal reaction ( 13 Be) Y. Kondo RIKEN Nishina Center

2
2 Y. Kondo, T. Nakamura, Y. Satou, T. Matsumoto, N. Aoi, N. Endo, N. Fukuda, T. Gomi, Y. Hashimoto, M. Ishihara, S. Kawai, M. Kitayama, T. Kobayashi, Y. Matsuda, N. Matsui, T. Motobayashi, T. Nakabayashi, K. Ogata, T. Okumura, H. J. Ong, T. K. Onishi, H. Otsu, H. Sakurai, S. Shimoura, M. Shinohara, T. Sugimoto, S. Takeuchi, M. Tamaki, Y. Togano, Y. Yanagisawa Tokyo Institute of Technology RIKEN Nishina Center Tohoku University Rikkyo University Kyushu University University of Tokyo Center for Nuclear Study (CNS), University of Tokyo

3
Exotic structures ▷ Neutron halo ▷ Magicity loss ( 12 Be, 32 Mg) ▷ Di-neutron correlation? ( 6 He, 11 Li) ▷ Different deformation of proton/neutron density( 16 C) Neutron halo Magicity loss Different deformations of Protons and neutrons Different deformations of Protons and neutrons Di-neutron? 13 Be, 14 Be 3

4
14 Be ▷ Drip-line nucleus ▷ Two neutron halo ▷ Borromean ( 12 Be+n, n+n systems are unbound) ▷ No bound excited states excited states locate above the neutron separation energy (S 2n =1.26MeV) 13 Be ▷ Unbound nucleus ▷ Low-lying levels are not clarified Several experimental results are not consistent Breakup of 14 Be on proton 4

5
Inelastic scattering One-neutron removal reaction 14 Be ▷ Angular distribution J assignment ▷ cross section collectivity 13 Be ▷ Momentum distribution of 13 Be system J assignment p 12 Be n n 14 Be 12 Be n n n n 14 Be* ~ 70 MeV/u p 12 Be n n 14 Be 12 Be n n 13 Be n ~ 70 MeV/u Coulomb breakup cross section is small 5

6
l=0l=1l=2 Momentum distribution spin-parity assignment of 13 Be l =2 l =1 l =0 Example of momentum distribution width of P distribution ▷ depends on the orbital angular momentum of a knocked-out neutron

7
7

8
Primary beam 18 O 100 MeV/u Production target Be 6 mm Plastic scintillator 1 mm 14 Be Energy : ~ 70MeV/u Intensity : ~8,000 counts/s Purity : 90% 14 Be Energy : ~ 70MeV/u Intensity : ~8,000 counts/s Purity : 90% RIPS （ RIKEN Projectile-fragment Separator) 8

9
14 Be PPAC Angle of 14 Be Dipole magnet Drift chamber (FDC) Particle Identification Drift chamber (MDC) Angle of 12 Be NaI(Tl) scintillator ray from 12 Be Reaction Target Liquid H 2 (227 mg/cm 2 ) charged particle Hodoscope (plastic scintillator) Velocity of 12 Be Neutron counter (plastic scintillator) Veto counter 12 Be n Detect 12 Be and (a) neutron(s) in coincidence ~ 70 MeV/u 9

10
Dipole Magnet Target Drift Chamber He bag Hodoscope Neutron Detector RIPS Beam 10

11
Charged particle VETO (thin plastic scintillators) Neutron counter Beam direction ~2m Efficiency For 1n detection Neutron Counter 54bars 6x6x214cm 3 11

12
Relative energy spectrum ( 12 Be+n+n) Angular distribution p 12 Be n n 14 Be 12 Be n n n n 14 Be(2 + )

13
Inelastic scattering 14 Be+p 14 Be* 12 Be+n+n ▷ Select M n =2 (detection multiplicity) crosstalk rejection (position, timing) Two neutron event Crosstalk One neutron is detected by two (or more) detectors Crosstalk events NEUT-BNEUT-A Same Wall event Different Wall event 13

14
p( 14 Be, 12 Be+n+n) 69 MeV/nucleon neutron crosstalk events are eliminated efficiency and acceptance are corrected Similar peak at around 0.3MeV was observed C( 14 Be, 12 Be+n+n) 68 MeV/nucleon (previous exp.) T. Sugimoto, T. Nakamura, Y. Kondo et al PLB 654,160 (2007) 14 Be(2 + ) E r =0.28(1)MeV L=2 14

15
DWBA analysis Two optical potentials (A) A.A. Korsheninnikov et al. PLB343, 53 (1995) (B) R.L. Varner et al. Phys. Rep. 201, 57 (1991) (CH89) =1.40(19) fm ( 14 Be+p) p( 14 Be, 12 Be+n+n) 69 MeV/nucleon 14 Be(2 + ) E rel ( 12 Be+n+n) (MeV) E rel =0.25(1) MeV =12.5±0.2±1.6 mb (A) (B) p( 14 Be, 14 Be(2 + ) ) 69 MeV/nucleon Y. Kondo, T. Nakamura, Y. Satou et al.: to be submitted Width is dominated by the experimental resolution (~100keV (1 @ 0.25MeV) (1 ) 15

16
2 + energy Lower than 12 Be Deformation length Smaller than 12 Be Proton/neutron collectivities can be deduced (now in progress) 16

17
Phase space decay ▷ 14 Be(2 1 + ) 12 Be+n+n Sequential Decay ▷ 14 Be(2 1 + ) 13 Be+n (E rel =0.1MeV) 12 Be+n+n (E rel =0.15MeV) sequential phase space 12 Be n n E c-n1 E n-n E c-n2 E c-(nn) 17

18
Relative energy spectrum ( 12 Be+n) Transverse momentum distributions p 12 Be n n 14 Be 12 Be n n 13 Be n

19
M n =1 events Inelastic channel Estimated from M n =2 events One-neutron removal channel Corresponds to 14 Be(2 + ) One-neutron removal channel (one neutron is emitted) knocked out Inelastic channel (two neutrons are emitted) not detected two cases in M n =1 events ▷ inelastic component should be subtracted 19 p( 14 Be, 12 Be+n+n) 69 MeV/nucleon 14 Be(2 + ) E rel ( 12 Be+n+n) (MeV) E rel =0.25(1) MeV =12.5±0.2±1.6 mb

20
13 Be 12 Be(1 - )+n (E =2.7MeV) 13 Be 12 Be(2 + )+n (E =2.1MeV) =11(2)mb (E rel =0~4MeV) =5.3(7)mb (E rel =0~4MeV) 12 Be+n =89(6)mb for 12 Be+n+ is small 20

21
Two peaks at 0.5MeV, 2MeV Transverse momentum distribution (not longitudinal) ▷ Width of momentum distributions are different between peak regions E rel ( 12 Be+n) (MeV) p( 14 Be, 12 Be+n) =89(6)mb (E rel =0-4MeV) 0.25-0.75MeV2.0-2.5MeV P x resolution ~30MeV/c 21

22
Relative energy spectrum ▷ p- and d-wave components Breit-Wigner shape ▷ s-wave component G.F. Bertsch et al: PRC 57, 1366 (1998) Momentum distribution CDCC calculation (by T. Matsumoto) 13 Be is assumed to be a core in 14 Be ▷ 13 Be-p interaction JLM interaction J. Jeukenne et al.: PRC16, 80 (1977) ▷ n-p interaction R.A. Malfliet and J.A.Tjon NPA127, 161 (1969) ▷ 13 Be-n potential Wood-Saxon form Depth is adjusted to reproduce the separation energy a : Scattering length 22

23
0.5 MeV peak p-wave resonance 2 MeV peak d-wave resonance p s d p s d E rel ( 12 Be+n) (MeV) p( 14 Be, 12 Be+n) =89(6)mb (E rel =0-4MeV) 0.25-0.75MeV2.0-2.5MeV 23 p d s

24
p-wave component ▷ E r =0.50(1) MeV ▷ =0.36(2) MeV consistent with sp (l=1) ▷ J =1/2- d-wave component ▷ E r =2.48(7) MeV ▷ =2.4(2) MeV larger than sp (l=2) other state @ 2MeV? s component a s ~ -3fm d state E r =2.48(7) MeV Γ=2.4(2)MeV p state E r =0.50(1) MeV Γ=0.36(2)MeV single particle width p -wave @0.50MeV sp ~0.5MeV d -wave @2.48MeV sp ~1.4MeV 24

25
The 2 + state in 14 Be locates lower than the g.s. of 13 Be Sequential decay process is energetically forbidden 25

26
The low-lying negative parity state Intruder state This work 26

27
Shell model calculation ▷ PSDMK D.J. Millener et al.: NPA255, 315 (1975) Provides the shell closure at 12 Be ▷ SFO (spin-flip p-n monopole interaction) T. Suzuki et al.: PRC67, 044302 (2003) resonably reproduce the magicity loss at 12 Be Shell model calculation ▷ PSDMK D.J. Millener et al.: NPA255, 315 (1975) Provides the shell closure at 12 Be ▷ SFO (spin-flip p-n monopole interaction) T. Suzuki et al.: PRC67, 044302 (2003) resonably reproduce the magicity loss at 12 Be 13 Be PSDMK Higher excitation energy of 1/2 SFO Ground state of 1/2 good! several states at ~2MeV 13 Be PSDMK Higher excitation energy of 1/2 SFO Ground state of 1/2 good! several states at ~2MeV Intruder 1/2- state disappearance of N=8 magicity explained by spin-flip p-n monopole interaction 12 Be 13 Be 27

28
▷ energy gap between [220 ½] and [101 ½] orbitals disappears with large prolate deformation ▷ Large quadrupole deformation ( ~0.6) of 12 Be H. Iwasaki et al. PLB481, 7 (2000) intruder 1/2- state of 13 Be indicate large deformation? 28 Ref) A. Bohr and B.R. Mottelson Nuclear structure Vol.1

29
Breakup reactions ( 14 Be+p) Inelastic scattering ▷ 2 + state of 14 Be ▷ Phase space decay of 2 + state One-neutron removal reaction ▷ Low-lying p-wave (intruder) resonance of 13 Be Breakup reactions ( 14 Be+p) Inelastic scattering ▷ 2 + state of 14 Be ▷ Phase space decay of 2 + state One-neutron removal reaction ▷ Low-lying p-wave (intruder) resonance of 13 Be 29

Similar presentations

OK

E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.

E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on high voltage engineering van Ppt on natural resources of earth Ppt on object-oriented programming definition Ppt on conservation of wildlife and natural vegetation definition Ppt on needle chest decompression Ppt on group development activities Ppt on air conditioning and refrigeration Ppt on organisational structure and design Ppt on seven wonders of the world 2013 Ppt on mauryan art