Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 STEADY JETS AND TRANSIENT JETS Characteristics and Relationship Max-Planck-Institut für Radioastronomie, 7 th - 8 th April 2010, Bonn Radio jets and.

Similar presentations


Presentation on theme: "1 STEADY JETS AND TRANSIENT JETS Characteristics and Relationship Max-Planck-Institut für Radioastronomie, 7 th - 8 th April 2010, Bonn Radio jets and."— Presentation transcript:

1 1 STEADY JETS AND TRANSIENT JETS Characteristics and Relationship Max-Planck-Institut für Radioastronomie, 7 th - 8 th April 2010, Bonn Radio jets and high energy emission in microquasars Josep M. Paredes

2 2 XB: A binary system containing a compact object (NS or a stellar-mass BH) accreting matter from the companion star. 299 XB in the Galaxy (HMXB, Liu et al. 2006, A&A 455,1165 and LMXB 2007, A&A 469, 807). HMXBs: (114) Optical companion with spectral type O or B. Mass transfer via decretion disc (Be stars) or via strong wind or Roche-lobe overflow. LMXBs: (185) Optical companion with spectral type later than B. Mass transfer via Roche-lobe overflow. Microquasars: X-ray binaries with relativistic jets At least 15 microquasars Maybe the majority of RXBs are microquasars (Fender 2001) 299 XB 65 (22%) REXBs 9 HMXBs 56 LMXBs

3 3 MICROQUASARS IN OUR GALAXY Name System D P orb M comp Activity  app θ Jet Size Remarks type (kpc) (d) (M  ) radio (AU) High Mass X-ray Binaries LS I B0V+NS?  p  0.4  10  700 Precession ? V4641 Sgr B9III+ BH ~ t  9.5   LS 5039 O6.5V+NS?  3 p  0.15 < 81º 10  1000 Precession? SS 433 evolved A?+BH? ± 5? p º ~10 4  10 6 Precession,Hadronic, X-ray jet Cygnus X-1 O9.7I+ BH p  40º ~ 40 Cygnus X-3 WNe+BH?  p º ~ 10 4 Radio outbursts Low Mass X-ray Binaries Circinus X-1 Subgiant+NS ~  t > XTE J G8+BH t  2  ~ 10 3 X-ray jet Scorpius X-1 Subgiant+NS p º ~ 40 GRO J F5IV+BH t º  85º 8000 Precession ? GX ?+ BH ~ ± 0.5 t   < E ?+BH ? 8.5? 12.5?  p   ~ 10 6 XTE J ?+BH ?  8 ? > 4.5? t 1.3  > 10 4 GRS ?+ BH ? 8.5? 18.5?  p   ~10 6 GRS K-MIII+BH ± 4 t 1.2  º  70º ~10  10 4 Precession?

4 Leptonic models: SSC Atoyan & Aharonian 1999, MNRAS 302, 253 Latham et al. 2005, AIP CP745, 323 EC Kaufman Bernadó et al. 2002, A&A 385, L10 Georganopoulos et al. 2002, A&A 388, L25 SSC+EC Bosch-Ramon et al A&A 417, 1075 Synchrotron jet emission Markoff et al. 2003, A&A 397, 645 Hadronic models: Pion decay Romero et al. 2003, A&A 410, L1 Bosch-Ramon et al. 2005, A&A 432, 609 MQs as high-energy γ -ray sources Theoretical point of view

5 The VHE gamma-ray Sky Map LS I LS 5039 PSR B At HE LSI+61303, LS5039 and Cygnus X-3: Fermi and AGILE (E > 100 MeV) Cygnus X-1: AGILE 5 Cygnus X-1 38 extragalactic 60 galactic

6 6 ParametersPSR B LS I LS 5039Cygnus X-1 Cygnus X-3 System TypeB2Ve+NSB0Ve+NS?O6.5V+BH?O9.7I+ BHWR+ BH? Distance (kpc)1.52.0± ±0.2≈7 Orbital Period (d) h Eccentricity ~0 Inclination (º)36 30  20 20? 33  5 Periastron-apastron (AU) Activity RadioPeriodic (48 ms and 3.4 yr) Periodic (26.5 d and 4 yr) Persistent and Bursts Radio Structure (AU)<2000~Jet-like Jet Jet 40 + ring L radio (0.1−100GHz) (erg s −1 ) (0.02 −0.3)× (1 − 17) × × × L X (1−10keV) (erg s −1 ) (0.3 − 6) ×10 33 (3 − 9) × (5 − 50) × × ≈10 38 L VHE (erg s −1 )2.3 × × × × Γ VHE 2.7 ± ± ± ± 0.6 Large luminosity and strong stellar wind Radio emitters might be a BH if i<25° (Casares et al. 2005)

7 7 Gallo et al. 2005, Nature Martí et al. 1996, A&A 306, pc (8’) diameter ring-structure of bremsstrahlung emitting ionized gas at the shock between (dark) jet and ISM. VLA WSRT Stirling et al. 2001, MNRAS 327, 1273 VLBA+VLA Stellar Mass Black Hole Cygnus X-1 15 mas 30 AU ● HMXB, O9.71+BH

8 8 ● Strong evidence (4.1  post trial significance) of intense short-lived flaring episode ● Orbital phase , when the black hole is behind the star and photon-photon absorption should be huge: flare in the jet? MAGIC Albert et al. 2007, ApJ 665, L51 TeV source: Cygnus X-1 Hard x-rays ==> base of the jet (non-thermal e in the hot comptonising medium, McConnell et al. 2002)  -rays ==> further away by interaction with stellar wind ( shocks located in the region where the outflow originating close to the BH interacts with the wind of the star, Perucho & Bosch-Ramon 2008, A&A 482, 917 ) Malzac et al. 2008, A&A 492, 527 INTEGRAL Flaring Activity

9 9 Sabatini et al. 2010, ApJ 712, L10 AGILE 2-years integrated map AGILE 1-day map Black circle: optical position Green contour: AGILE 2sig confidence level October 16, 2009

10 10 RXTE 2-10 keV Swift keV Super-AGILE (gray dots)

11 11 AGILE 2 sig U.L. above 100 MeV A: 2 weeks B: 4 weeks C: 315 d AGILE data flaring episode Hard state Soft state

12 12 Second AGILE detection of a gamma-ray flare from the Cygnus X-1 region (24-25 March 2010) Bulgarelli et al. 2010, Atel 2512 Fermi Public data. V. Zabalza

13 13 Strong radio outbursts  Modelling Cyg X-3 radio outbursts: particle injection into twin jets Martí et al. 1992, A&A 258, 309  Exhibits flaring to levels of 20 Jy or more  In 1972 was first “caught” flaring above 20 Jy. These events are amongst the best-known examples of observed expanding synchrotron- emitting sources (21 papers in Nature Phys. Sci. 239, No. 95 (1972)) VLBA Cygnus X-3 VLA, 5 GHz Martí et al. 2001, A&A 375, 476 Miller-Jones et al. 2004, ApJ 600, 368 ● HMXB, WR+NS? Orbital modulation of X-ray emission lines i>60 NS, i<60 BH Vilhu et al. 2009, A&A 501,679

14 14 RXTE ASM 3–5 keV — BATSE 20–100 keV ┼ GBI 8.3 GHz …. Strong radio flares occur only when the source is in the soft state Szostek et al. 2008, MNRAS 388, 1001 If the non-thermal electrons responsible for either the hard X-ray tails or the radio emission during major flares were accelerated to high enough energies then detectable emission in the γ-ray range, e.g., the GeV or TeV band, would be possible. Given that major radio flares indicates the presence of hard X-ray tails, GeV and TeV emission should be searched for during those radio flares.

15 15 Tavani et al. 2009, Nature 462, 620 AGILE

16 16 Abdo et al. 2009, Science 326, 1512 Fermi

17 17 Dubus et al. 2010, MNRAS Jet launched around a BH - moderate bulk relativistic speed - oriented not too far from the light of sight The e − emit synchrotron radio beyond the γ-ray emission zone on much larger scales A shock occurs in the wind because (Perucho et al. 2010, A&A) - wind mass-loss rate is very large - orbit very tight Jet IC emission >100 MeV γ-ray modulation in Cyg X-3 Anisotropic IC e ± pair cascade model. The optical depths for γ-rays created inside the binary system are huge. Escape of γ-rays with energies above a few tens of GeV is not very likely. Bednarek, 2010, MNRAS Anisotropic IC by jet relat. e − with stellar photons along the orbit produces a modulation in the gamma-ray lightcurve (Khangulyan et al. 2008, MNRAS) Most μqs jets will interact much further away when their pressure matches that of the ISM. Any HE particles will find a much weaker radiation environment and will be less likely to produce a (modulated) IC γ-ray

18 18 First high-energy (> 100 MeV) COS-B gamma-ray source: CG/2CG Hermsen et al. 1977, Nature 269, 494 The radio emitting X-ray binary LS I , since its discovery as a variable radio source, has been proposed to be associated with the γ-ray source 2CG (= 3EG J ) (Gregory & Taylor 1978, Nature 272, 704) LS I Historical association with a γ-ray source 26.5 days periodicity Radio (P= d) Taylor & Gregory 1982, ApJ 255, 210; Gregory 2002, ApJ 575, 427 Optical and IR Mendelson & Mazeh 1989, MNRAS 239, 733; Paredes et al A&A 288, 519 X-rays Paredes et al A&A 320, L25 HE gamma-rays Abdo et al. 2009, ApJ 701, L123 VHE gamma-rays Albert et al. 2009, ApJ 693, 303 Periodic emission

19 Tavani et al. 1998, ApJ 497, L89 3EG J EGRET Fermi Abdo et al. 2009, ApJ 701, L Albert et al. 2009, ApJ 693, 303 Fermi MAGIC blue, VERITAS black, MAGIC Albert et al. 2006, Sci 312, 1771

20 20 Accretion onto a compact object (NS or BH) embedded in mass outflow of the B-star Taylor & Gregory 1982, ApJ 255, 210; Taylor et al. 1992, ApJ 395, 268 LS I Resolved radio emission pointed towards the microquasar scenario (Massi et al A&A 376, 217) Non-accreting young pulsar in orbit around a mass-losing B star Powered by the spindown of a young pulsar (Maraschi & Treves 1981, MNRAS 194,1) Revived after the discovery of PSR B (Tavani et al. 1994, ApJ 433, L37) EVN at 5 GHz MERLIN at 5 GHz

21 21 Jet-like features have been reported several times, but show a puzzling behavior (Massi et al. 2001, 2004). VLBI observations show a rotating jet-like structure (Dhawan et al. 2006, VI Microquasars Workshop, Como, Setember 2006) 3.6cm images, ~3d apart, beam 1.5x1.1mas or 3x2.2 AU. Semi-major axis: 0.5 AU VLBA A BC D E FG H I J Observer NOT TO SCALE

22 Pulsar scenario: Interaction of the relativistic wind from a young pulsar with the wind from its stellar companion. A comet-shape tail of radio emitting particles is formed rotating with the orbital period. We see this nebula projected (Dubus 2006, A&A 456, 801). UV photons from the companion star suffer IC scattering by the same population of non-thermal particles, leading to emission in the GeV-TeV energy range Zdziarski et al. 2010, MNRAS Not resolved yet the issue of the momentum flux of the pulsar wind being significantly higher than that of the Be wind, which presents a problem for interpretation of the observed radio structures (as pointed out by Romero et al. 2007). 22

23 23 Romero, Okazaki et al. (A&A 474, 15) apply a “Smoothed Particle Hydrodynamics” (SPH) code in 3D dynamical simulations for both the pulsar-wind interaction and accretion-jet models. When orbital effects are included, even the most favourable assumptions toward a large Be/pulsar wind momentum ratio do not produce the simple elongated shape inferred in the VLBI radio image, which was previously cited as strong evidence in favour of a pulsar wind interaction scenario B e starPulsar Massi & Zimmermann 2010 (arXiv: ) Massi & Kaufman Bernadó 2009, ApJ 702, 1179 Lense-Thirring precession induced by a slowly rotating compact object could be compatible with the daily variations of the ejecta angle observed in LS I +61◦ yr GBI data Periodic outbursts: two consecutive outbursts (opt. thick and opt. thin) Shock-in-jet model: The opt. thin spectrum is due to shocks caused by relativistic plasma (transient jet) traveling through a preexisting much slower steady flow (steady jet)

24 24 VLBA+VLA, 5 GHz 3EG J Paredes et al. 2000, Science 288, 2340 LS 5039 EGRET HESS Aharonian et al. 2005, Science 309, 746 Aharonian et al. 2006, A&A 460, day orbital modulation in the TeV  -ray flux ● HMXB, O6.5V+NS? The γ-ray data require a location of the production region at the periphery of the binary system at ~10 12 cm (Khangulyan et al. 2008, MNRAS; Bosch-Ramon et al. 2008, A&A)

25 25 Abdo et al. 2009, ApJ 706, L56 Black points (dotted line): phase-averaged spectrum Red points (dotted line): spectrum (fit) at inferior conjunction ( ) Blue data points (dotted line): spectrum (fit) at superior conjunction ( 0.9) Fermi and H.E.S.S. Fermi

26 BP051 (1999) BR127 (2007) GR021 (2000) Phase To observer The orbital plane has two degrees of freedom: Longitude of the ascending node Inclination of the orbit Preliminary! [Moldón et al., in preparation] 26

27 27 Skilton et al. 2009, MNRAS 399, 317 Binary system? -Coincident with Be star MWC No companion yet detected; no information on period -Variable X-ray and radio emission Acciari (for the VERITAS Col.), arxiv: A new gamma-ray binary? HESS J Hinton et al. 2009, ApJ 690, L101 MWC 148: star XMMU J : open circle Pos. uncertainty of CoG of HESS J : square marker with error bar

28 28 Instrument PSR B LS I LS 5039Cygnus X-1Cygnus X-3 EGRET >100 MeV __3EG J EG J __ AGILE 30 MeV-50 GeV __yes__yes FERMI 30 MeV-300 GeV __yes __yes HESS >100 GeV yesnot visibleyes__ MAGIC >60 GeV not visibleyes__yes__ VERITAS >100 GeV not visibleyes__ Periodic All of them are HMXBs  All of them are radio emitters  All of them have a bright companion (O or B star)  source of seed photons for the IC emission and target nuclei for hadronic interactions  NS and BH are among these detected XRBs  VLBI monitoring of the jets along the orbit is crucial to understand some of these systems  Multi-wavelength (multi-particle) campaigns are of primary importance  HESS J : New gamma-ray binary? Summary


Download ppt "1 STEADY JETS AND TRANSIENT JETS Characteristics and Relationship Max-Planck-Institut für Radioastronomie, 7 th - 8 th April 2010, Bonn Radio jets and."

Similar presentations


Ads by Google