Presentation is loading. Please wait.

Presentation is loading. Please wait.

Travelling Wave Ion Mobility Studies of Polymer Microstructure Jim Scrivens.

Similar presentations


Presentation on theme: "Travelling Wave Ion Mobility Studies of Polymer Microstructure Jim Scrivens."— Presentation transcript:

1 Travelling Wave Ion Mobility Studies of Polymer Microstructure Jim Scrivens

2 Challenges in characterising polymer formulations Extremely complex mixtures Variation of starting materials Poorly controlled reactions Molecular weight range Sold on properties not structure Chromatographic separation difficult

3 Requirement Rapid analysis High information content Molecular weight and structural information Ability to differentiate small differences in complex formulations

4 Ion mobility platforms Drift cell –Currently predominately academic based Differential mobility spectroscopy (DMS) –Includes FAIMS –Theory challenging Travelling wave –Commercially available –Theory challenging

5 Ion mobility issues Sensitivity Speed Selectivity Ease of use Resolution Availability Information content Reproducibility Calibration Cost Data analysis

6 References Ion mobility–mass spectrometry –Abu B. Kanu, Prabha Dwivedi, Maggie Tam, Laura Matz and Herbert H. Hill Jr. –J. Mass Spectrom. 2008; 43: 1–22 Differential Ion Mobility Spectrometry: Nonlinear Ion Transport And Fundamentals Of FAIMS –Alexandre A Shvartsburg –CRC Press, ISBN: , 2008

7 Travelling Wave References An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument –Steven D. Pringle, Kevin Giles, Jason L. Wildgoose, Jonathan P. Williams, Susan E. Slade, Konstantinos Thalassinos, Robert H. Bateman, Michael T. Bowers and James H. Scrivens –International Journal of Mass Spectrometry, 261, 1-12, 2007 Applications of Travelling Wave Ion Mobility-Mass Spectrometry –Konstantinos Thalassinos and James H Scrivens –Practical Aspects of Trapped Ion Mass Spectrometry Volume 5, 2009 Special issue of IJMS on Ion Mobility –Edited by Richard Yost, James Scrivens –IJMS, 2010

8 Pringle, S. D. et al., International Journal of Mass Spectrometry, 261, 1-12, 2007 Thalassinos K and Scrivens J H, “Applications of Travelling Wave Ion Mobility-Mass Spectrometry”, Practical Aspects of Trapped Ion Mass Spectrometry Volume 5 Schematic of Synapt G1

9 Features of Synapt Ease of use Rapid analysis (typically 200 spectra in 18ms) High sensitivity (fmole) Can acquire MS, MS/MS with accurate mass data Estimated relative cross-sections can be obtained by use of calibration against known standards

10 Aspirations Higher mobility resolution Better dynamic range Higher resolution mass spectrometry No compromise in: - –Sensitivity –Speed –Ease of use

11 Schematic of Synapt G2

12 TOF developments  QuanTof improvements — High field pusher — Dual stage reflectron — Hybrid ion detection system — compatible with UPLC separations — compatible with HDMS analysis  Performance — Resolution – over 40,000 FWHM — Mass Measurement – 1ppm RMS — Dynamic Range – up to 10 5 — Speed - 20 Spectra/sec

13 Mobility Cell improvements  Second generation Triwave device — Increased ion mobility resolution (over 40 Ω/ΔΩ)  IMS cell 40% longer  Higher gas pressure in IMS T-Wave (2.5mb versus 0.5mb)  Modified T-Wave pattern - use of Higher T-Wave pulse amplitudes/fields  Helium cell balances N 2 pressure in Maximizes transmission of ions on entry into the mobility cell

14 Rabbit haemoglobin peptide Synapt G1 m/z 977 m/z 857 m/z 1037 m/z 1134

15 Rabbit haemoglobin peptide Synapt G2 m/z 977 m/z 857 m/z 1037 m/z 1134

16 Rabbit haemoglobin peptide ATD comparison Synapt G2 m/z 977 m/z 857 m/z 1037 m/z 1134

17 Positive ion [M+Na] + ESI mass spectrum of N- glycans released from chicken ovalbumin

18 Ion mobility separations of positive ions [M+Na] + of N-glycans released from chicken ovalbumin with compositions of Hex 3 GlcNAc 2 Hex 3 GlcNAc 3 (two isomers) and Hex 3 GlcNAc 4

19

20 Positive ion [M+Na] + ion mobility MS/MS spectra of the first and second N-glycan isomers of m/z 1136 from chicken ovalbumin

21 EESI of aerosol formulations

22 Carbomethoxypyridines

23 Mobility separation of isomers

24 ATD for isomers

25 Isobaric PEG systems Oligomers of di-hydroxyl end-capped PEG & PEG monooleate have same nominal mass-to- charge ratio –Different number of moles of ethylene oxide (EO) Resolution required to separate oligomers is ~6300 Difference in m/z for two oligomers is –m/z –m/z

26 Synapt G1 mobility separation – m/z 553 [M+Li] + Hilton G. R., et al,. Anal. Chem., 2008, 80 (24),

27 Synapt G1 mobility separation – m/z 861 [M+Li] + Hilton G. R., et al,. Anal. Chem., 2008, 80 (24),

28 Synapt G2: Ion mobility separation – m/z 1126 [M+Li] + Precursor ion resolution 8434

29 Driftscope separation G2 PEG 1000 PEG mono oleate

30 Synthesis of Tween 20 [C 2 H 4 O] n O + - H 2 O + IsosorbideSorbitan - H 2 O Sorbitol

31 Structures of Tween formulations FormulationStructureIndicated purity Tween 20Polyoxyethylene (20) sorbitan monolaurate 50% Tween 40Polyoxyethylene (20) sorbitan monopalmatate 90% Tween 60Polyoxyethylene (20) sorbitan monostearate 50% Tween 80Polyoxyethylene (20) sorbitan monooleate 70%

32 Structures of major products Sorbitan polyethoxylate [SPE]Isosorbide polyethoxylate [SPE] Polysorbate monoester [PME]

33 Tween 20 overall averaged spectrum

34 Major species Tween 20 Series n*22 Li 2 [2 + ] R = C 11 H 23 [laurate] 686*2 = – 14 [Li 2 ] = – 164 [sorbitan] = – 182 [RCOOH – H 2 O] = /44 [CH 2 CH 2 O] = 23 W + X + Y + Z = 23 Polysorbate monoester [PME]

35 Major species Tween 20 Series n*22 Li 2 [2 + ] 573*2 = – 14 [Li 2 ] = – 164 [sorbitan] = /44 [CH 2 CH 2 O] = 22 W + X + Y + Z = 22 Sorbitan polyethoxylate [SPE]

36 Major species Tween 20 Series n*22 Li 2 [2 + ] 322*2 = – 14 [Li 2 ] = – 146 [isosorbide] = /44 [CH 2 CH 2 O] = 11 P + M = 11 Isosorbide polyethoxylate [SPE]

37 Tween 20 mobility separation

38

39

40 Tween 20 MALDI spectrum Isosorbide polyethoxylate [SPE] Sorbitan polyethoxylate [SPE] Polysorbate monoester [PME] Folahan O Ayorinde et al Rapid Comm. Mass Spectrom, 14, 2116, (2000)

41 Tween 40 overall averaged spectrum

42 Major series Tween 40 Series n*22 Li 2 [2 + ] R = C 15 H 31 [palmitate] 670*2 = – 14 [Li 2 ] = – 164 [sorbitan] = – 238 [RCOOH – H 2 O] = /44 [CH 2 CH 2 O] = 21 W + X + Y + Z = 21 Polysorbate monoester [PME]

43 Major series Tween 40 Series n*22 Li 2 [2 + ] 573*2 = – 14 [Li 2 ] = – 164 [sorbitan] = /44 [CH 2 CH 2 O] = 22 W + X + Y + Z = 22 Sorbitan polyethoxylate [SPE]

44 Major series Tween 40 Series n*22 Li 2 [2 + ] 322*2 = – 14 [Li 2 ] = – 146 [isosorbide] = /44 [CH 2 CH 2 O] = 11 P + M = 11 Isosorbide polyethoxylate [SPE]

45 Tween 40 mobility separation

46

47 Tween 40 extracted regions A B

48 Tween 40 conformational families A B Polysorbate monoester [PME] Sorbitan polyethoxylate [SPE]

49 Tween 40 extracted regions a b c

50 c b a Tween 40 conformational families Polysorbate monoester [PME] Polyisosorbide monoester [PME]

51 Tween 40 MALDI spectrum Isosorbide polyethoxylate [SPE] Sorbitan polyethoxylate [SPE] Polysorbate monoester [PME]

52 Tween 60 overall averaged spectrum

53 Tween 60 mobility separation

54 Tween 60 MALDI spectrum Isosorbide polyethoxylate [SPE] Sorbitan polyethoxylate [SPE] Polysorbate monoester [PME]

55 Tween 80 overall averaged spectrum

56 Tween 80 mobility separation

57 Tween 80 MALDI spectrum Isosorbide polyethoxylate [SPE] Sorbitan polyethoxylate [SPE] Polysorbate monoester [PME]

58 Conclusions ESI mobility-separated spectra offer an excellent screening approach for complex polymer formulations A number of, previously unseen, conformational series may be observed and extracted Mobility-separated MS/MS data can provide more detailed structural information The ESI spectra show greater agreement with published compositions than those obtained using MALDI

59 BMSP research group

60 Funding


Download ppt "Travelling Wave Ion Mobility Studies of Polymer Microstructure Jim Scrivens."

Similar presentations


Ads by Google