Presentation is loading. Please wait.

Presentation is loading. Please wait.

Travelling Wave Ion Mobility Studies of Polymer Microstructure

Similar presentations


Presentation on theme: "Travelling Wave Ion Mobility Studies of Polymer Microstructure"— Presentation transcript:

1 Travelling Wave Ion Mobility Studies of Polymer Microstructure
Jim Scrivens

2 Challenges in characterising polymer formulations
Extremely complex mixtures Variation of starting materials Poorly controlled reactions Molecular weight range Sold on properties not structure Chromatographic separation difficult

3 Requirement Rapid analysis High information content
Molecular weight and structural information Ability to differentiate small differences in complex formulations

4 Ion mobility platforms
Drift cell Currently predominately academic based Differential mobility spectroscopy (DMS) Includes FAIMS Theory challenging Travelling wave Commercially available

5 Ion mobility issues Sensitivity Speed Selectivity Ease of use
Resolution Availability Information content Reproducibility Calibration Cost Data analysis

6 References Ion mobility–mass spectrometry
Abu B. Kanu, Prabha Dwivedi, Maggie Tam, Laura Matz and Herbert H. Hill Jr. J. Mass Spectrom. 2008; 43: 1–22 Differential Ion Mobility Spectrometry: Nonlinear Ion Transport And Fundamentals Of FAIMS Alexandre A Shvartsburg CRC Press, ISBN:   , 2008

7 Travelling Wave References
An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument Steven D. Pringle , Kevin Giles , Jason L. Wildgoose , Jonathan P. Williams , Susan E. Slade , Konstantinos Thalassinos , Robert H. Bateman , Michael T. Bowers and James H. Scrivens International Journal of Mass Spectrometry, 261, 1-12, 2007 Applications of Travelling Wave Ion Mobility-Mass Spectrometry Konstantinos Thalassinos and James H Scrivens Practical Aspects of Trapped Ion Mass Spectrometry Volume 5, 2009 Special issue of IJMS on Ion Mobility Edited by Richard Yost, James Scrivens IJMS, 2010

8 Schematic of Synapt G1 Pringle, S. D. et al., International Journal of Mass Spectrometry, 261, 1-12, 2007 Thalassinos K and Scrivens J H, “Applications of Travelling Wave Ion Mobility-Mass Spectrometry”, Practical Aspects of Trapped Ion Mass Spectrometry Volume 5

9 Features of Synapt Ease of use
Rapid analysis (typically 200 spectra in 18ms) High sensitivity (fmole) Can acquire MS, MS/MS with accurate mass data Estimated relative cross-sections can be obtained by use of calibration against known standards

10 Aspirations Higher mobility resolution Better dynamic range
Higher resolution mass spectrometry No compromise in: - Sensitivity Speed Ease of use

11 Schematic of Synapt G2

12 TOF developments QuanTof improvements Performance High field pusher
Dual stage reflectron Hybrid ion detection system compatible with UPLC separations compatible with HDMS analysis Performance Resolution – over 40,000 FWHM Mass Measurement – 1ppm RMS Dynamic Range – up to 105 Speed - 20 Spectra/sec

13 Mobility Cell improvements
Second generation Triwave device Increased ion mobility resolution (over 40 Ω/ΔΩ) IMS cell 40% longer Higher gas pressure in IMS T-Wave (2.5mb versus 0.5mb) Modified T-Wave pattern - use of Higher T-Wave pulse amplitudes/fields Helium cell balances N2 pressure in Maximizes transmission of ions on entry into the mobility cell

14 Rabbit haemoglobin peptide Synapt G1
m/z 1134 m/z 1037 m/z 857 m/z 977

15 Rabbit haemoglobin peptide Synapt G2
m/z 1134 m/z 1037 m/z 857 m/z 977

16 Rabbit haemoglobin peptide ATD comparison
m/z 1134 Synapt G2 m/z 1037 m/z 857 m/z 977

17 Positive ion [M+Na]+ ESI mass spectrum of N-glycans released from chicken ovalbumin

18 Ion mobility separations of positive ions [M+Na]+ of N-glycans released from chicken ovalbumin with compositions of Hex3GlcNAc2 Hex3GlcNAc3 (two isomers) and Hex3GlcNAc4

19 Ion mobility separations of positive ions [M+Na]+ of N-glycans released from chicken ovalbumin with compositions of Hex3GlcNAc2 Hex3GlcNAc3 (two isomers) and Hex3GlcNAc4

20 Positive ion [M+Na]+ ion mobility MS/MS spectra of the first and second N-glycan isomers of m/z 1136 from chicken ovalbumin

21 EESI of aerosol formulations
Breath analysis, diagnostics

22 Carbomethoxypyridines

23 Mobility separation of isomers

24 ATD for isomers

25 Isobaric PEG systems Oligomers of di-hydroxyl end-capped PEG & PEG monooleate have same nominal mass-to-charge ratio Different number of moles of ethylene oxide (EO) Resolution required to separate oligomers is ~6300 Difference in m/z for two oligomers is m/z m/z

26 Synapt G1 mobility separation – m/z 553
[M+Li]+ [M+Li]+ Hilton G. R., et al,. Anal. Chem., 2008, 80 (24),

27 Synapt G1 mobility separation – m/z 861
[M+Li]+ [M+Li]+ Hilton G. R., et al,. Anal. Chem., 2008, 80 (24),

28 Synapt G2: Ion mobility separation – m/z 1126
[M+Li]+ [M+Li]+ Precursor ion resolution 8434

29 Driftscope separation G2
PEG 1000 PEG mono oleate

30 Synthesis of Tween 20 - H2O + + - H2O Sorbitol Sorbitan Isosorbide
[C2H4O]nO +

31 Structures of Tween formulations
Indicated purity Tween 20 Polyoxyethylene (20) sorbitan monolaurate 50% Tween 40 Polyoxyethylene (20) sorbitan monopalmatate 90% Tween 60 Polyoxyethylene (20) sorbitan monostearate Tween 80 Polyoxyethylene (20) sorbitan monooleate 70%

32 Structures of major products
Isosorbide polyethoxylate [SPE] Sorbitan polyethoxylate [SPE] Polysorbate monoester [PME]

33 Tween 20 overall averaged spectrum

34 Major species Tween 20 Series 1 686.4 + n*22 Li2 [2+]
R = C11H23 [laurate] 686*2 = 1372 1372 – 14 [Li2] = 1358 1358 – 164 [sorbitan] = 1194 1194 – 182 [RCOOH – H2O] = 1012 1012/44 [CH2CH2O] = 23 W + X + Y + Z = 23 Polysorbate monoester [PME]

35 Major species Tween 20 Series 2 573.3 + n*22 Li2 [2+] 573*2 = 1146
1132 – 164 [sorbitan] = 968 968/44 [CH2CH2O] = 22 W + X + Y + Z = 22 Sorbitan polyethoxylate [SPE]

36 Major species Tween 20 Series 3 322 + n*22 Li2 [2+] 322*2 = 644
630 – 146 [isosorbide] = 484 484/44 [CH2CH2O] = 11 P + M = 11 Isosorbide polyethoxylate [SPE]

37 Tween 20 mobility separation

38 Tween 20 mobility separation

39 Tween 20 mobility separation

40 Tween 20 MALDI spectrum Sorbitan polyethoxylate [SPE]
Isosorbide polyethoxylate [SPE] Polysorbate monoester [PME] Folahan O Ayorinde et al Rapid Comm. Mass Spectrom, 14, 2116, (2000)

41 Tween 40 overall averaged spectrum

42 Major series Tween 40 Series 1 670.4 + n*22 Li2 [2+]
R = C15H31 [palmitate] 670*2 = 1340 1340 – 14 [Li2] = 1326 1326 – 164 [sorbitan] = 1162 1162 – 238 [RCOOH – H2O] = 924 924/44 [CH2CH2O] = 21 W + X + Y + Z = 21 Polysorbate monoester [PME]

43 Major series Tween 40 Series 2 573.3 + n*22 Li2 [2+] 573*2 = 1146
1132 – 164 [sorbitan] = 968 968/44 [CH2CH2O] = 22 W + X + Y + Z = 22 Sorbitan polyethoxylate [SPE]

44 Major series Tween 40 Series 3 322 + n*22 Li2 [2+] 322*2 = 644
630 – 146 [isosorbide] = 484 484/44 [CH2CH2O] = 11 P + M = 11 Isosorbide polyethoxylate [SPE]

45 Tween 40 mobility separation

46 Tween 40 mobility separation

47 Tween 40 extracted regions
B

48 Tween 40 conformational families
Polysorbate monoester [PME] B Sorbitan polyethoxylate [SPE]

49 Tween 40 extracted regions
b c

50 Tween 40 conformational families
Polysorbate monoester [PME] Polyisosorbide monoester [PME] b c

51 Tween 40 MALDI spectrum Sorbitan polyethoxylate [SPE]
Isosorbide polyethoxylate [SPE] Polysorbate monoester [PME]

52 Tween 60 overall averaged spectrum

53 Tween 60 mobility separation

54 Tween 60 MALDI spectrum Sorbitan polyethoxylate [SPE]
Isosorbide polyethoxylate [SPE] Polysorbate monoester [PME]

55 Tween 80 overall averaged spectrum

56 Tween 80 mobility separation

57 Tween 80 MALDI spectrum Sorbitan polyethoxylate [SPE]
Isosorbide polyethoxylate [SPE] Polysorbate monoester [PME]

58 Conclusions ESI mobility-separated spectra offer an excellent screening approach for complex polymer formulations A number of, previously unseen, conformational series may be observed and extracted Mobility-separated MS/MS data can provide more detailed structural information The ESI spectra show greater agreement with published compositions than those obtained using MALDI

59 BMSP research group

60 Funding


Download ppt "Travelling Wave Ion Mobility Studies of Polymer Microstructure"

Similar presentations


Ads by Google