Download presentation

Presentation is loading. Please wait.

Published byRamon Piller Modified over 2 years ago

1
Transportation problem Factories Customers Requirement for goods Production capacity... Minimum cost of transportation satisfying the demand of customers. aiai aiai bjbj bjbj i-th factory delivers to j-th customer at cost c ij a1a1 a2a2 anan bmbm b1b1 b2b2

2
Transportation tableau 7 x 11 3 x 12 4 x 13 u18u18 4 x 21 2 x 22 2 x 23 u26u26 2 x 31 1 x 32 5 x 33 u33u33 v14v14 v22v22 v33v33 cost c ij of delivering from ith factory to jth customer supply a i of ith factory demand b j of jth customer shadow customer’s “price” shadow factory “price” shadow prices are relative to some baseline amount transported

3
Transportation problem a1a1 b1b1 a2a2 b2b2 b3b3 a3a3 a4a4 b4b4 7 x 11 3 x 12 4 x 13 u18u18 4 x 21 2 x 22 2 x 23 u26u26 2 x 31 1 x 32 5 x 33 u33u33 v14v14 v22v22 v33v33 7 x 11 3 x 12 4 x 13 0 x 14 u18u18 4 x 21 2 x 22 2 x 23 0 x 24 u26u26 2 x 31 1 x 32 5 x 33 0 x 34 u33u33 v14v14 v22v22 v33v33 v48v48 7 x 11 3 x 12 4 x 13 0 x 14 u18u18 4 x 21 2 x 22 2 x 23 0 x 24 u26u26 2 x 31 1 x 32 5 x 33 0 x 34 u33u33 9 x 41 8 x 42 11 x 43 0 x 44 u40u40 v14v14 v22v22 v33v33 v48v48

4
7 x 11 3 x 12 4 x 13 0 x 14 u18u18 4 x 21 2 x 22 2 x 23 0 x 24 u26u26 2 x 31 1 x 32 5 x 33 0 x 34 u33u33 v14v14 v22v22 v33v33 v48v48 Transportation Simplex Applying the Simplex method to the problem Basic solution – min-cost method Pivoting – shadow prices set u 1 = 0, then u i + v j =c ij – reduced cost pivot if u i + v j > c ij Finding a loop 0 2 0 6 take the smaller of the two 2 6 0 1 0 3 12 0 33 0 0 must mark exactly m + n – 1 = 6 cells cost = 3×7 + 3×4 + 2×0 + 1×2 + 2×1 + 6×0 = 37 z = 37

5
7 x 11 3 x 12 4 x 13 0 x 14 u18u18 4 x 21 2 x 22 2 x 23 0 x 24 u26u26 2 x 31 1 x 32 5 x 33 0 x 34 u33u33 v14v14 v22v22 v33v33 v48v48 Transportation Simplex Applying the Simplex method to the problem Basic solution – min-cost method Pivoting – shadow prices set u 1 = 0, then u i + v j =c ij – reduced cost pivot if u i + v j > c ij Finding a loop 6 2 12 33 z = 37 0 4 u i =0 and v j must sum up to c ij = 4v j = 4 7 0 -5 6 0

6
7 x 11 3 x 12 4 x 13 0 x 14 u18u18 4 x 21 2 x 22 2 x 23 0 x 24 u26u26 2 x 31 1 x 32 5 x 33 0 x 34 u33u33 v14v14 v22v22 v33v33 v48v48 Transportation Simplex Applying the Simplex method to the problem Basic solution – min-cost method Pivoting – shadow prices set u 1 = 0, then u i + v j =c ij – reduced cost pivot if u i + v j > c ij Finding a loop 6 2 12 33 z = 37 0 47 0 -5 6 0 calculate u i + v j -5 76 4 6 > > > > ≤ ≤

7
7 x 11 3 x 12 4 x 13 0 x 14 u18u18 4 x 21 2 x 22 2 x 23 0 x 24 u26u26 2 x 31 1 x 32 5 x 33 0 x 34 u33u33 v14v14 v22v22 v33v33 v48v48 Transportation Simplex Applying the Simplex method to the problem Basic solution – min-cost method Pivoting – shadow prices set u 1 = 0, then u i + v j =c ij – reduced cost pivot if u i + v j > c ij Finding a loop New basis 6 2 2+Δ2+Δ 11+Δ1+Δ 22-Δ2-Δ 33-Δ3-Δ 3 z = 37 0 47 0 -5 6 0 -5 76 4 6 > > > > ≤ ≤ +Δ+Δ 6-Δ6-Δ Largest feasible Δ = 2 2 4 4 1 3 z = 29

Similar presentations

OK

Basel-ICU-Journal Challenge18/20/2014. 2Basel-ICU-Journal Challenge8/20/2014.

Basel-ICU-Journal Challenge18/20/2014. 2Basel-ICU-Journal Challenge8/20/2014.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on db2 introduction to algebra Ppt on job evaluation questionnaire Ppt on product advertising examples Ppt on solar based traffic light control system Ppt on field trip Ppt on world book day costume Ppt on image demosaicing images Ppt on exponential functions Ppt on railway reservation project Ppt on viruses and bacteria facts