Download presentation

Presentation is loading. Please wait.

Published byJada McLain Modified over 2 years ago

1
3.3 Differentiation Rules Colorado National Monument Photo by Vickie Kelly, 2003 Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts

2
If the derivative of a function is its slope, then for a constant function, the derivative must be zero for all x. example: The derivative of a constant function is zero.

3
We saw that if,. This is part of a larger pattern! examples: power rule

4
examples: constant multiple rule:

5
(Each term is treated separately) sum and difference rules:

6
Example: Find the horizontal tangents of: Horizontal tangents: (slope of y) = (derivative of y) = zero. Substitute these x values into the original equation to generate coordinate pairs: (0, 2), (-1, 1) and (1,1) (So we expect to see two horizontal tangents, intersecting the curve at three points.) … and write tangent lines:

7

8

9

10

11
First derivative y (slope) is zero at: …where y has slopes of zero The derivative of y is zero at x= -1, 0, 1…

12
product rule: Notice: the derivative of a product is not just the product of the two derivatives. (Our authors write this rule in the other order!) This rule can be spoken as:d(uv) = v du + u dv = (2x 3 + 5x)(2x)+ (x 2 + 3)(6x 2 + 5) = (4x x 2 ) + (6x x ) = 10x x u = x v = 2x 3 + 5x du/dx = dv/dx = 2x x 2 + 5

13
quotient rule: or u = 2x 3 + 5x v = x du = dv =

14
Higher Order Derivatives: is the first derivative of y with respect to x. is the second derivative (y double prime), the derivative of the first derivative. is the third derivative We will see later what these higher-order derivatives might mean in the real world! (y triple prime), the derivative of the second derivative.

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google