Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 11 Modern Computer Systems, Clusters, and Networks The Architecture of Computer Hardware and Systems Software: An Information Technology Approach.

Similar presentations


Presentation on theme: "Chapter 11 Modern Computer Systems, Clusters, and Networks The Architecture of Computer Hardware and Systems Software: An Information Technology Approach."— Presentation transcript:

1 Chapter 11 Modern Computer Systems, Clusters, and Networks The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons  2003 Wilson Wong, Bentley College Linda Senne, Bentley College

2 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-2 Basic Personal Computer System

3 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-3 Mainframe Computer System

4 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-4 Major PC System Components

5 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-5 System Performance Improvements  Multiple CPUs  Faster clock speed, buses and circuits  Wider instruction and data paths  Faster disk access  More and faster memory

6 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-6 Multiprocessing  Reasons  Increase the processing power of a system  Parallel processing  Types of multiprocessor systems  Tightly coupled systems  Loosely coupled systems

7 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-7 Tightly Coupled Systems  Also called multiprocessor systems  Identical access to programs, data, shared memory, I/O, etc.  Easily extends multi-tasking, and redundant program execution  Two ways to configure  Master-slave multiprocessing  Symmetrical multiprocessing (SMP)

8 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-8 Tightly Coupled Systems

9 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-9 Master-Slave Multiprocessing  Master CPU  Manages the system  Controls all resources and scheduling  Assigns tasks to slave CPUs  Advantages  Simplicity  Protection of system and data  Disadvantages  Master CPU becomes a bottleneck  Reliability issues – if master CPU fails entire system fails

10 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-10 Symmetrical Multiprocessing  Each CPU has equal access to resources  Each CPU determines what to run using a standard algorithm  Disadvantages  Resource conflicts – memory, i/o, etc.  Complex implementation  Advantages  High reliability  Fault tolerant support is straightforward  Balanced workload

11 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-11 Loosely Coupled Systems  Clusters or multi-computer systems  Each system has its own CPU, memory, and I/O facilities  Each system is known as a node of the cluster  Advantages  Fault-tolerant, scalable, well balanced, distance is not an issue  Two ways to configure  Shared-nothing model  Shared-disk model

12 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-12 Shared-Nothing Model  High speed link between nodes  No sharing of resources  Partitioning of work through division of data  Advantage  Reduced communication between nodes  Disadvantage  Can result in inefficient division of work

13 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-13 Shared-Disk Model  High speed link between nodes  Disk drives are shared between nodes  Advantage  Better load balancing  Disadvantage  Complex software required for transactional processing (lock, commit phases)

14 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-14 Cluster Models

15 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-15 Beowulf Clusters  Simple and highly configurable  Low cost  Networked  Computers connected to one another by a private Ethernet network  Connection to an external network is through a single gateway computer  Configuration  COTS – Commodity-off-the-shelf components such as inexpensive computers  Blade components – computers mounted on a motherboard that are plugged into connectors on a rack  Either shared-disk or shared-nothing model

16 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-16 Blade and Rack of Beowulf Cluster Figure 11.9

17 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-17 Computer Interconnection  Communication channel – pathway for data movement between computers  Point-to-Point connectivity  Communication channel that passes data directly between two computers  Serial connection  Telephone modem  Terminal controller – handles multiple point-to- point connections for a host computer  Multipoint connectivity  Multidrop channel or shared communication channel

18 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-18 Example: Point-to-Point

19 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-19 Client-Server Architecture  Computer servers provides services  File storage, databases, printing services, login services, web services  Client computers  Execute programs in its own memory  Access files either locally or can request files from a server

20 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-20 Client-Server Network

21 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-21 LAN Topology  Arrangement of workstations in a shared medium environment  Logical arrangement (data flow)  Physical arrangement (cabling scheme)

22 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-22 LAN Topologies: Bus  Multipoint medium  Stations attach to linear medium (bus) using tap  Transmission from any stations travels entire medium (both directions)  Termination required at ends of bus to prevent the signal from bouncing  Break in cable brings down entire bus

23 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-23 Bus LAN Diagram

24 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-24 LAN Topologies: Tree  Generalization of bus topology  Branching cable with no closed loops  Cable(s) begin at headend, travel to branches which may have branches of their own  Each transmission propagates through network, can be received by any station

25 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-25 LAN Topologies: Ring  Repeaters are joined by unidirectional point-to-point links in a ring  As data circulates past a receiver, the receiver checks its address, and copies those intended for it into a local buffer  Data circulates until it returns to source, which removes it from network  Better performance at high levels of usage

26 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-26 Ring LAN Diagram

27 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-27 LAN Topologies: Star  Each station connected point-to-point to a central station, usually with two undirectional links  Switching in the central station connects pairs of nodes together  Central node can broadcast info, or can switch frames among stations  Failure of central station causes entire network to go down

28 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-28 Star LAN Diagram

29 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-29 Ethernet MAC Protocol  MAC – Medium Access Control  Ethernet and CSMA/CD  Carrier sense multiple access with collision detection  Four step procedure  If medium is idle, transmit  If medium is busy, listen until idle and then transmit  If collision is detected, cease transmitting  After a collision, wait a random amount of time before retransmitting

30 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-30 Ethernet Frame

31 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-31 Switched Ethernet

32 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-32 Token Ring MAC Protocol  Token “seized” by changing a bit on the circulating frame to indicate start of frame rather than token  Default configuration requires sender to complete transmission and begin receiving transmitted frame before releasing the token  “Early token release” allows release of token after transmission but before receipt of frame

33 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-33 Hubs  The active central element of the star layout.  When a single station transmits, the hub repeats the signal on the outgoing line to each station.  Hubs can be cascaded in a hierarchical configuration  Ethernet hubs are physically a star but logically a bus.

34 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-34 Bridges  Allow connections between LANs and to WANs  Used between similar networks  Read all frames from each network  Accept frames from sender on one network that are addressed to a receiver on the other network  Retransmit frames from sender using MAC protocol for receiver

35 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-35 Routers  Similar to bridges but connect dissimilar networks  Convert format of the message to correspond to the protocol of the other network  Network traffic is specifically addressed to the router

36 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-36 Wide Area Network  Circuit switching  Dedicated channel between source and destination for duration of connection  Message switching  Dedicated channel for an entire message  Packet switching  An independent path is created for each datagram  Virtual circuit switching  A route is created from source to destination before transmission begins and all datagrams are sent using the same route

37 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-37 Networks vs. Clusters  Externally, clusters appear as a single computing unit.  Network nodes are individually identifiable.  Workload on a cluster is determined by cluster administration and load- balancing software.  Network workload cannot be controlled using the above method.

38 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-38 High Performance Computing  Massively parallel processor architectures (MPP)  Clusters of power machines or larger Beowulf blade clusters  Well suited for problems that can be broken into subtasks  Grid computing  Supercomputer performance through distributing CPU processing to the spare CPU cycles of personal computers connected to a network

39 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-39 Parallel Computers  Massively parallel architectures  Hundreds to millions of CPUs  CPUs have small amounts of local memory  All CPUs have access to global shared memory  Pipelined CPUs  Results from one CPU flow to the next CPU for additional processing

40 Chapter 11: Modern Computer Systems, Clusters, and Networks 11-40 Copyright 2003 John Wiley & Sons All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the permissions Department, John Wiley & Songs, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information contained herein.”


Download ppt "Chapter 11 Modern Computer Systems, Clusters, and Networks The Architecture of Computer Hardware and Systems Software: An Information Technology Approach."

Similar presentations


Ads by Google