Presentation is loading. Please wait.

Presentation is loading. Please wait.

An Adaptive, Dynamical Model of Linguistic Rhythm Sean McLennan Proposal Defense 040406.

Similar presentations


Presentation on theme: "An Adaptive, Dynamical Model of Linguistic Rhythm Sean McLennan Proposal Defense 040406."— Presentation transcript:

1 An Adaptive, Dynamical Model of Linguistic Rhythm Sean McLennan Proposal Defense

2 Proposal Defense - Sean McLennan Underlying Intuitions Somewhere between the signal and low level speech recognition, linguistic time is imposed upon real time. Linguistic time is more relevant to speech recognition than real time. Not all segments are created equal - certain points / intervals in the speech stream are more important for recognition than others.

3 Proposal Defense - Sean McLennan What Rhythm Is and Is Not Rhythm - historically based primarily on the perception that different languages are temporally organized differently Three recognized rhythmic types: stress-timed (English), syllable-timed (French), and mora- timed (Japanese) Rhythm implies underlying isochrony which turns out to be absent (ex. Dauer, 1983)

4 Proposal Defense - Sean McLennan Recent Views of Rhythm Ramus and colleagues: examined three factors: %V ΔV ΔC %V = proportion of vocalic intervals in the signal ΔV = variation of length of vocalic intervals ΔC = variation of length of consonantal intervals

5 Proposal Defense - Sean McLennan Recent Views of Rhythm

6 Proposal Defense - Sean McLennan Recent Views of Rhythm

7 Proposal Defense - Sean McLennan Recent Views of Rhythm

8 Proposal Defense - Sean McLennan Rhythm and Segmentation Cutler and Colleagues study the question of how rhythm type impacts on the segmentation of words from the speech stream implication being that a naïve listener (i.e. an infant) uses rhythm as a bootstrap for early stages of acquisition Showed that boundaries are imposed on the speech stream in a rhythm-class-appropriate manner

9 Proposal Defense - Sean McLennan The Proposed Model hopefully a bridge between Cutler et al and Ramus et al - why should %V ΔV ΔC impact on segmentation? can a naïve adaptive model responsive to %V ΔV and ΔC produce behavior consistent with segmentation based on rhythm-type?

10 Proposal Defense - Sean McLennan The Proposed Model - Where Finding salient points in the signal:

11 Proposal Defense - Sean McLennan The Proposed Model - How Much %V ΔV and ΔC need two points to be consistently tracked: vocalic onsets and offsets

12 Proposal Defense - Sean McLennan The Proposed Model - How Much Use these spikes to drive an adaptive oscillator Unlikely to entrain but will make predictions

13 Proposal Defense - Sean McLennan The Proposed Model - How Much The accuracy of prediction will be a measure of ΔC and ΔV Difference in the period will be a measure of %V

14 Proposal Defense - Sean McLennan The Proposed Model - How Much ΔVΔV Voc Cons ΔCΔC

15 Proposal Defense - Sean McLennan Proposed Model - How Much Proof of Concept - Periodic Signal

16 Proposal Defense - Sean McLennan Proposed Model - How Much Proof of Concept - Aperiodic Signal

17 Proposal Defense - Sean McLennan The Proposed Model - How Much Attentional window size (hopefully) would correlate with rhythm type and would predict different potential segmentation boundaries

18 Proposal Defense - Sean McLennan The Proposed Model Predictions, questions, and other benefits: consistent with the correlation between rhythmic type and consonant cluster complexity consistent with ambisyllabicity perhaps attractor states predict categorical differences suggests manner in which to manipulate tasks to force effects particularly with respect to speaking rate and rhythmic priming single language-independent mechanism


Download ppt "An Adaptive, Dynamical Model of Linguistic Rhythm Sean McLennan Proposal Defense 040406."

Similar presentations


Ads by Google