Download presentation

Presentation is loading. Please wait.

1
**Special Types of Factoring**

Section 5.5 Special Types of Factoring

2
**Objectives Difference of Two Squares Perfect Square Trinomials**

Sum and Difference of Two Cubes

3
**DIFFERENCE OF TWO SQUARES**

For any real numbers a and b, a2 – b2 = (a – b)(a + b).

4
Example Factor each difference of two squares. a. 9x2 – 16 b. 5x2 + 8y2 c. 25x2 – 16y2 Solution a. 9x2 – 16 b. Because 5x2 + 8y2 is the sum of two squares, it cannot be factored. c. 25x2 – 16y2 = (3x)2 – (4)2 = (3x – 4) (3x + 4)

5
Example Factor each expression. a. (x + 3)2 − 16 b. 8s2 – 32t4 c. x3 + x2 − 4x − 4 Solution a. (x + 3)2 − 16 b. Factor out the common factor of 8. = (x + 3)2 – 42 = ((x + 3) – 4))((x + 3) + 4)) = (x – 1)(x + 7) 8s2 – 32t4 = 8(s2 – 4t4) = 8(s2 – (2t2)2) = 8(s – 2t2)(s + 2t2)

6
Example (cont) c. x3 + x2 − 4x − 4 Start factoring by using grouping and then factor the difference of squares. x3 + x2 − 4x − 4 = (x3 + x2) + (−4x − 4) = x2(x + 1) − 4(x + 1) = (x2 − 4)(x + 1) = (x − 2)(x + 2)(x + 1)

7
**PERFECT SQUARE TRINOMIALS**

For any real numbers a and b, a2 + 2ab + b2 = (a + b)2 and a2 − 2ab + b2 = (a − b)2.

8
Example Factor. a. x2 + 8x + 16 b. 4x2 − 12x + 9 Solution a. x2 + 8x + 16 Start by writing as x2 + 8x + 42 Check the middle term 2(x)(4) = 8x, the middle term checks x2 + 8x + 16 = (x + 4)2

9
Example (cont) Factor. a. x2 + 8x + 16 b. 4x2 − 12x + 9 Solution b. 4x2 − 12x + 9 Start by writing as (2x)2 − 12x + 32 Check the middle term 2(2x)(3) = 12x, the middle term checks 4x2 − 12x + 9 = (2x – 3)2

10
Example Factor each expression. a. 9x2 + 6xy + y2 b. 16a3 + 8a2b + ab2 Solution a. 9x2 + 6xy + y2 Let a2 = (3x)2 and b2 = y2. 2ab = 2(3x)(y) = 6xy, which equals the given middle term. Thus a2 + 2ab + b2 = (a + b)2 implies 9x2 + 6xy + y2 = (3x + y)2.

11
Example (cont) Factor each expression. a. 9x2 + 6xy + y2 b. 16a3 + 8a2b + ab2 Solution b. 16a3 + 8a2b + ab2 Factor out the common factor of a. Then factor the resulting perfect square trinomial. 16a3 + 8a2b + ab2 = a(16a2 + 8ab + b2) = a(4a + b)2

12
**SUM AND DIFFERENCE OF TWO CUBES**

For any real numbers a and b, a3 + b3 = (a + b)(a2 – ab + b2) and a3 − b3 = (a − b)(a2 + ab + b2)

13
Example Factor each polynomial. a. n b. 8x3 − 125y3 Solution a. n Because n3 = (n)3 and 27 = 33, we let a = n, b = 3, and factor. a3 + b3 = (a + b)(a2 – ab + b2) gives n = (n + 3)(n2 – n ∙ ) = (n + 3)(n2 – 3n + 9)

14
Example (cont) Factor each polynomial. a. n b. 8x3 − 125y3 Solution b. 8x3 − 125y3 8x3 = (2x)3 and 125y3 = (5y)3, so 8x3 − 125y3 = (2x)3 – (5y)3 a3 + b3 = (a + b)(a2 – ab + b2) gives (2x)3 – (5y)3 = (2x − 5y)(4x2 + 10xy + 25y2)

15
Example Factor the expression x6 + 64y3. Solution Let x3 = (x2)3 and b3 = (4y)3. a3 + b3 = (a + b)(a2 – ab + b2) implies x6 + 64y3 = (x2 + 4y)(x4 – 4x2y + 16y2).

Similar presentations

Presentation is loading. Please wait....

OK

Special Factoring Formulas

Special Factoring Formulas

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on online railway ticket reservation system Ppt on human nutrition and digestion chapter Ppt on carl friedrich gauss formula Ppt on success and failure of jamestown Ppt on 9/11 conspiracy essay Free ppt on human evolution Ppt on nutrition in plants of class 7th Download ppt on teamviewer 6 Mis ppt on hospital waste Ppt on philosophy of science