Download presentation

Presentation is loading. Please wait.

Published byAntwan Jolley Modified over 3 years ago

1
Existence of Z-cyclic 3PTWh(p) for any prime p ≡ 1 (mod 4) 冯 弢 (Tao Feng) 常彦勋 (Yanxun Chang) Beijing Jiaotong University

2
Let X be a set of v players, v = 4n (or 4n+1). Let B be a collection of ordered 4-subsets (a, b, c, d) of X (called games), where the unordered pairs {a, c}, {b, d} are called parters, the pairs {a, b}, {c, d} opponents of the first kind, {a, d}, {b, c} opponents of the second kind. a db c parter Triplewhist tournament （ TWh ）

3
Let X be a set of v players, v = 4n (or 4n+1). Let B be a collection of ordered 4-subsets (a, b, c, d) of X (called games), where the unordered pairs {a, c}, {b, d} are called parters, the pairs {a, b}, {c, d} opponents of the first kind, {a, d}, {b, c} opponents of the second kind. a db c Opponent of the first kind a db c Opponent of the second kind Triplewhist tournament （ TWh ）

4
a)the games are arranged into 4n- 1 (or 4n+1) rounds, each of n games b)each player plays in exactly one game in each round (or all rounds but one) c) each player partners every other player exactly once d) each player has every other player as an opponent of the first kind exactly once, and that of the second kind exactly once. Triplewhist tournament （ TWh ） TWh(4)

5
Z-cyclic TWh(4) Z-cyclic Triplewhist tournament （ Z-cyclic TWh ） A triplewhist tournament is said to be Z-cyclic if ① the players are elements in Z m ∪ A, where ② the round j+1 is obtained by adding 1 (mod m) to every element in round j, where ∞ + 1 = ∞. m = v, A = if v ≡ 1 (mod 4) m = v - 1, A = {∞} if v ≡ 0 (mod 4)

6
A Z-cyclic triplewhist tournament is said to have three-person property if the intersection of any two games in the tournament is at most two. Z-cyclic TWh(4) Z-cyclic Triplewhist tournament with three-person property (Z-cyclic 3PTWh)

7
Main Result Theorem There exists a Z-cyclic 3PTWh(p) for any prime p ≡ 1 (mod 4) with the only exceptions of p=5, 13, 17. Z-cyclic 3PTWh(p) with p a prime

8
Lemma [Buratti, 2000] Let p ≡ 5 (mod 8) be a prime and let (a, b, c, d) be a quadruple of elements of Z p satisfying the following conditions: (1) {a, b, c, d} is a representative system of the coset classes,,, }; (2) Each of the sets {a-b, c-d}, {a-c, b-d}, {a-d, b-c} is a representative system of the coset classes {, }. Then R = {(ay, by, cy, dy) ∣ y ∈ } is the initial round of a Z-cyclic TWh(p).

9
Let G be an abelian group, and a, b, c are pairwise distinct elements of G. Let O(a, b, c) = {{a+g, b+g, c+g}: g ∈ G}, which is called the orbit of {a, b, c} under G. If the order of G is a prime p, p ≠ 3, then ︱ O(a, b, c) ︱ = p. O(a, b, c) ? O(a’, b’, c’) Let G(a, b, c)={{b-a, c-a}, {a-b, c-b}, {a-c, b-c}}, which is called the generating set for O(a, b, c) O(a, b, c) ∩ O(a’, b’, c’) ≠, then G(a, b, c) = G(a’, b’, c’) O(a, b, c) = O(a’, b’, c’) iff G(a, b, c) = G(a’, b’, c’)

10
Lemma [T. Feng, Y. Chang, 2006] Let p ≡ 5 (mod 8) be a prime and let (a, b, c, d) be a quadruple of elements of Z p satisfying the following conditions: (1) {a, b, c, d} is a representative system of the coset classes,,, }; (2) b-a ∈, c-a ∈, c-b ∈, d-a ∈, d-b ∈, d-c ∈, Then R = {(ay, by, cy, dy) ∣ y ∈ } is the initial round of a Z-cyclic 3PTWh(p).

11
Lemma [Y. Chang, L. Ji, 2004] Use Weil’s theorem to guarantee the existence of certain elements in Z p

12
References: 1.M. Buratti, Existence of Z-cyclic triplewhist tournaments for a prime number of players, J. Combin. Theory Ser.A 90 (2000), 315--325. 2.Y. Chang, L. Ji, Optimal (4up, 5, 1) Optical orthogonal codes, J. Combin. Des. 5 (2004), 346-361. 3. T. Feng and Y. Chang, Existence of Z-cyclic 3PTWh(p) for any prime p ≡ 1 (mod 4), Des. Codes Crypt. 39 (2006), 39-49.

13
Thank you

Similar presentations

OK

Section 11 Direct Products and Finitely Generated Abelian Groups One purpose of this section is to show a way to use known groups as building blocks to.

Section 11 Direct Products and Finitely Generated Abelian Groups One purpose of this section is to show a way to use known groups as building blocks to.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on business communication Ppt on career options in humanities Ppt on human chromosomes types Ppt on centroid and centre of gravity Ppt on world book day ideas Ppt on 3-phase squirrel cage induction motor Ppt on growing old gracefully Ppt on micro hydro power plant Formal backgrounds for ppt on social media Ppt on obesity diet and exercise