# Chapter 12.

## Presentation on theme: "Chapter 12."— Presentation transcript:

Chapter 12

IMPORTANT! From Chapter 11, KNOW area formulas for: Triangles Rectangles Trapezoids Hexagons

Name the parts: 3 1 2 (Right Rectangular Prism)

1- lateral edge (height) 2- lateral face (side) 3- base (top/bottom)

RIGHT PRISM: SA = ( ____ )( ____ ) + 2( ____ )

SA = ph + 2B height Base Area base perimeter

RIGHT PRISM: Volume = ( ____ )( ____ )

V = Bh Base Area height

SA = 2( __ )( __ )( __ ) + 2( __ )( __)
RIGHT CYLINDER: SA = 2( __ )( __ )( __ ) + 2( __ )( __)

SA = 2πrh + 2πr2

RIGHT CYLINDER: V = ( ____ )( ____ )( ____ )

V = πr2h

Complete: SA V Prisms ph + 2B Bh Cylinders

SA V Prisms ph + 2B Bh Cylinders 2πrh + 2πr2 πr2h

Name the parts: 1 2 4 3 5 (Square Pyramid)

1- lateral edge. 2- slant height (l). 3- apothem. 4- height (h)
1- lateral edge 2- slant height (l) 3- apothem 4- height (h) 5- base edge

SA = ½ ( ___ )( ___ ) + ( ___ )
PYRAMID: SA = ½ ( ___ )( ___ ) + ( ___ )

SA = ½ pl + B base Area base perimeter

PYRAMID: V = ( ____ )( ____ )

V = Bh Base Area

Name the parts: 3 1 2

1- height (h) 2- radius (r) 3- slant height (l)

SA = ( __ )( __ )( __ ) + ( __ )( __ )
CONES: SA = ( __ )( __ )( __ ) + ( __ )( __ )

SA = π r l + π r2

CONES: V = 1/3 ( ___ )( ___ )( ___ )

V = 1/3 π r2 h volume of a cylinder

Complete the chart: Surface Area Volume Pyramids ½ pl + B Bh Cones

½ pl + B B h ½ (2 π r) l + π r2 or π r l + π r2 π r2 h Surface Area
Volume Pyramids ½ pl + B B h Cones ½ (2 π r) l + π r2 or π r l + π r2 π r2 h

Area = ( ___ )( ___ )( ___ )
SPHERES: Area = ( ___ )( ___ )( ___ )

A = 4 π r2 Area of a circle

SPHERE: V = ( ___ )( ___ )( ___ )

V = π r3

If r3 = 8 then r = ____ If r3 = 27 then r = ____ If r3 = 125 then r = ____

If r3 = 8 then r = 2 If r3 = 27 then r = 3 If r3 = 125 then r = 5

Find the slope and y-intercept of the following line: 6x – 8y = 15

6x – 8y = 15 -8y = -6x+ 15 y = x + slope (3/4) y-intercept (-15/8)

Solve by factoring: x2 – 3x – 10 = 0

x2 – 3x – 10 = 0 (x – 5)(x + 2) = 0 x = 5, -2