Download presentation

Presentation is loading. Please wait.

Published byMaeve Morren Modified over 2 years ago

1
Chapter 12

2
IMPORTANT! From Chapter 11, KNOW area formulas for: Triangles Rectangles Trapezoids Hexagons

3
Name the parts: (Right Rectangular Prism)

4
1- lateral edge (height) 2- lateral face (side) 3- base (top/bottom)

5
RIGHT PRISM: SA = ( ____ )( ____ ) + 2( ____ )

6
SA = ph + 2B base perimeter height Base Area

7
RIGHT PRISM: Volume = ( ____ )( ____ )

8
V = Bh Base Area height

9
RIGHT CYLINDER: SA = 2( __ )( __ )( __ ) + 2( __ )( __)

10
SA = 2πrh + 2πr 2

11
RIGHT CYLINDER: V = ( ____ )( ____ )( ____ )

12
V = πr 2 h

13
Complete: SAV Prismsph + 2BBh Cylinders

14
SAV Prismsph + 2BBh Cylinders 2πrh + 2πr 2 πr 2 h

15
Name the parts: 1 (Square Pyramid)

16
1- lateral edge 2- slant height (l) 3- apothem 4- height (h) 5- base edge

17
PYRAMID: SA = ½ ( ___ )( ___ ) + ( ___ )

18
SA = ½ pl + B base perimeter base Area

19
PYRAMID: V = ( ____ )( ____ )

20
V = Bh Base Area

21
Name the parts: 1 2 3

22
1- height (h) 2- radius (r) 3- slant height (l)

23
CONES: SA = ( __ )( __ )( __ ) + ( __ )( __ )

24
SA = π r l + π r 2

25
CONES: V = 1/3 ( ___ )( ___ )( ___ )

26
V = 1/3 π r 2 h volume of a cylinder

27
Complete the chart: Surface AreaVolume Pyramids ½ pl + BBhBh Cones

28
Surface AreaVolume Pyramids ½ pl + BB h Cones ½ (2 π r) l + π r 2 or π r l + π r 2 π r 2 h

29
SPHERES: Area = ( ___ )( ___ )( ___ )

30
A = 4 π r 2 Area of a circle

31
SPHERE: V = ( ___ )( ___ )( ___ )

32
V = π r 3

33
If r 3 = 8 then r = ____ If r 3 = 27 then r = ____ If r 3 = 125 then r = ____

34
If r 3 = 8 then r = 2 If r 3 = 27 then r = 3 If r 3 = 125 then r = 5

35
Find the slope and y-intercept of the following line: 6x – 8y = 15

36
6x – 8y = 15 -8y = -6x+ 15 y = x + slope (3/4) y-intercept (-15/8)

37
Solve by factoring: x 2 – 3x – 10 = 0

38
x 2 – 3x – 10 = 0 (x – 5)(x + 2) = 0 x = 5, -2

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google