Download presentation

Presentation is loading. Please wait.

1
Analysis of Variance

2
**Analysis of Variance : the simultaneous comparizon of several population means**

F-distribution : used to test whether two samples are from population having equal variances and it is also applied when we want to compare several population means simultaneously.

3
**Comparing two population variance**

2 Ho : σ = σ H1 : σ = σ Test statistic for comparing two variances : F = ~ F- distribution 2 2 1 2 2 1 2 2 s 1 2 s 2

4
Contoh : Sean Lammers, president of the Lammers Limos Service Company, membandingkan variasi waktu tempuh (menit) dari Cityhall di Toledo, Ohio ke Metro Airport di Detroit melalui 2 rute ( via US -25 dan Interstate-75), dengan taraf α = 10 % US-25 route Interstate-75 route 52 67 56 45 70 54 64 59 60 61 51 63 57 65

5
US-Route-25 Interstate-75 Rata-rata = 28.29 Std deviasi = Rata-rata = 59.00 Std deviasi = US-Route25 is more variation then Interstate-75 route,This is somewhat consistent with his knowledge of two route; US-25 contain more stoplights, I-75 is limited-access interstate highway, but I-75 is several miles longer.

6
Nilai F = 4.23, Nilai tabel F distribution pada Appendix G pada buku Douglas A. Lind,dkk,Statistical Techniques in Business of Economics,International Edition,yaitu : nilai F dengan α/2 = 5 %, dan df numerator 6 dan df denominator 7 adalah sebesar 3.87. Hasil ini menunjukkan bahwa Ho di tolak Berikan kesimpulan anda.

7
The Anova Test Total Variation : the sum of the squared differences between each observation and the overall mean (grand mean); SS-total Treatment Variation : the sum of the squared differences between each treatment mean and the overall mean (grand mean); SST Random Variation : the sum of the squared differences between each observation and its treatment mean; SSE

8
SS-total = Σ(X-XG)2 SSE = Σ(X-XC)2 SST = Σ(Xc -XG)2 SST = SS-total - SSE

9
**ANOVA Table Source of Variation Sum of Squares Degrees of Freedom**

Mean Square F Treatments Error Total SST SSE SS- Tolal k-1 n-k n-1 SST/(k-1) = MST SSE/(n-k) = MSE MST/ MSE

10
Example : Prof. James had students in his marketing class rate his performance as Excellent, Good, Fair or Poor. A graduate student collected the rate and from records office, Prof. James was matched with his or her course grade. The sample information is reported below. Is there a difference in the mean score of the students in each of the four rating categories ? Use the 0.01 significance level. (note : The rating is the treatment variable) Formulasikan hipotesis, buat tabel anova, tentukan nilai F tabel dan buat keputusan !

11
Course Grades Excellent Good Fair Poor Total 94 90 85 80 75 68 77 83 88 70 73 76 78 65 72 74 Column 349 391 510 414 1664 n 4 5 7 6 22 Mean 87.25 78.20 72.86 69.00 75.64

12
Ho : μ1= μ2 = μ3 = μ4 H1 : The mean scores are not all equal

13
**Berikan kesimpulan anda !**

ANOVA Table Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatments Error Total 890.68 594.41SSE SS- Tolal 3 18 21 296.89 33.02 8.99 Nilai F tabel untuk α = 0.01, df numerator = 3 dan df denominator =18, adalah 5.09 Berikan kesimpulan anda !

14
Two-way Anova We have the second treatment variable, that is Blocking variable Blocking variable : A second treatment variable that when included in the ANOVA analysis will have the effect of reducing the SSE term

15
SSB = k Σ(Xb-XG)2 k is the number of treatment b is the number of blocks Xb is the sample mean of block b XG is the overall or grand mean SSE = SS total – SST - SSB

16
**ANOVA Table Source of Variation Sum of Squares Degrees of Freedom**

Mean Square F Treatments Blocks Error Total SST SSB SSE SS- Tolal k-1 b-1 (k-1)(b-1) n-1 SST/(k-1) = MST SSB/(b-1) =MSB SSE/(k-1)(b-1) = MSE MST/ MSE MSB/MSE

17
Example The Chapin Manufacturing Company operates 24 hours a day, five days a week. The workers rotate shifts each week. Management is interested in whether there is a difference in the number of units produced when the employees work on various shifts. A sample of five workers is selected and their output recorded on each shift. At the 0.05 significance level, can we conclude there is a difference in the mean production rate by shift or by employee ?

18
Employee Units Produced Day Afternoon Night Skaff 31 25 35 Lum 33 26 Clark 28 24 30 Treece 29 Morgan 27

19
**ANOVA Table For Block : For treatment : Ho :μ1 = μ2 = μ3 = μ4 = μ5**

H1 : Not all means equal Reject if F > 4.46 For Block : Ho :μ1 = μ2 = μ3 = μ4 = μ5 H1 : Not all means equal Reject if F > 3.84 ANOVA Table Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatment (rotate shift) Blocks (employee) Error Total 62.53 33.73 43.47 139.73 2 4 8 14 8.4325 5.4338 5.75 1.55 There is a difference in shifts but not by employees.

Similar presentations

OK

Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.

Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Production and cost in the long run ppt on tv Free ppt on network topology Ppt on e mail Ppt on business communication skills Ppt on central limit theorem examples Ppt on principles of peace building jobs Ppt on 10 figures of speech A ppt on pollution Ppt on thermal conductivity of insulating powder Ppt on product advertising ideas