Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nervous System AP Biology Chap 48. Neuron The basic structural unit of the nervous system.

Similar presentations


Presentation on theme: "Nervous System AP Biology Chap 48. Neuron The basic structural unit of the nervous system."— Presentation transcript:

1 Nervous System AP Biology Chap 48

2 Neuron The basic structural unit of the nervous system

3 The job of the neurons Neurons transfer long-distance information via electrical signals and usually communicate between cells using short-distance chemical signals.

4 The higher order processing of nervous signals may involve clusters of neurons called ganglia or most structured groups of neurons organized into a brain.

5 Types of neurons Sensory (afferent) – receive stimulus Motor (efferent) stimulate effectors which are target cells, muscles, sweat glands, stomach, etc. Association (interneurons) located in spinal cord or grain integrate or evaluate impulses for appropriate responses.

6

7 The transmitting cell is called the presynaptic cells The receiving cell is the postsynaptic cell

8 Neuron Structure Cell body which contains the nucleus and organelles and numerous extensions Dendrites receive signals Axon longer, transmits signals Ends of axons end in synaptic terminals which release neurotransmitters across a synapse Glial cells nourish and support the neurons

9 Fig Dendrites Stimulus Nucleus Cell body Axon hillock Presynaptic cell Axon Synaptic terminals Synapse Postsynaptic cell Neurotransmitter Direction of impulse

10 Glial Cells Nourish neurons Insulate axons Regulate the extracellular fluid around the neuron

11 Nerve conduction In order to conduct an electrical nerve impulse, a voltage or membrane potential, exists across the plasma membrane of all cells. For a typical non-transmitting neuron, this is called the resting potential and is between -60 and -80 mV.

12 Membrane Potential Principal cation inside of cell K Principle anion inside of cell: negatively-charged proteins, amino acids, PO 4 and SO 4. Symbol is A -. Inside is NEGATIVE!

13 Outside of the cell Principal ion is Na + Outside is positive!

14

15

16 Measuring membrane potential

17 How is the membrane potential established? Ion channels Concentration of ions Size of particles (proteins too large – semipermeable nature of membrane) Na-K pump maintains Na outside and K inside

18 Fig. 48-6b (b) OUTSIDE CELL Na + Key K+K+ Sodium- potassium pump Potassium channel Sodium channel INSIDE CELL

19

20 What causes the generation of a nerve signal? Neurons and muscle cells are excitable cells – they can change their membrane potentials due to gated ion channels* – can be chemically gated which respond to neurotransmitters or voltage-gated which respond to a change in membrane potential. * Found only in nerve cells

21 Upon receiving a stimulus, Na + channels open and Na + flows into the cells and thus they become more positive inside and more negative outside and the charge on the membrane becomes depolarized. The stronger the stimulus, the more Na gated Ion channels open.

22 Production of an Action Potential Once depolarization reaches a certain membrane voltage called the threshold level (-50 mv), more Na gates open and an action potential is triggered that results in complete depolarization. This stimulates neighboring Na gates, further down the neuron, to open. The action potential is an all or none event, always creating the same voltage spike once the threshold is reached.

23 Fig Key Na + K+K+ +50 Action potential Threshold –50 Resting potential Membrane potential (mV) –100 Time Extracellular fluid Plasma membrane Cytosol Inactivation loop Resting state Sodium channel Potassium channel Depolarization Undershoot Notice, gates are closed!

24 Fig Key Na + K+K+ +50 Action potential Threshold –50 Resting potential Membrane potential (mV) –100 Time Extracellular fluid Plasma membrane Cytosol Inactivation loop Resting state Sodium channel Potassium channel Depolarization Undershoot Notice, gates are closed! Some Na + gates open!

25 Fig Key Na + Na + gates open! K Action potential Threshold –50 Resting potential Membrane potential (mV) –100 Time Extracellular fluid Plasma membrane Cytosol Inactivation loop Resting state Sodium channel Potassium channel Depolarization Rising phase of the action potential Undershoot A lot of Na + gates open!

26 In response to the inflow of Na, the gated K channels begin to open, allowing K to rush to the outside of the cell. Na gates close. This creates a reverse charge polarization, (neg outside, positive inside) called repolarization.

27 Fig Key Na + K+K+ +50 Action potential Threshold –50 Resting potential Membrane potential (mV) –100 Time Extracellular fluid Plasma membrane Cytosol Inactivation loop Resting state Sodium channel Potassium channel Depolarization Rising phase of the action potential Falling phase of the action potential Undershoot Na closes, K opens

28 In fact more K ions go out than is actually needed to return to threshold, resulting in an increased negative charge inside called a hyperpolarization or undershoot. This keeps the direction of the nerve impulse going one way and not backing up.

29 Fig Key Na + K+K+ +50 Action potential Threshold –50 Resting potential Membrane potential (mV) –100 Time Extracellular fluid Plasma membrane Cytosol Inactivation loop Resting state Sodium channel Potassium channel Depolarization Rising phase of the action potential Falling phase of the action potential 5 Undershoot Hyperpolarization K just keeps flowing out.

30 Refractory Period After the impulse, the Na channels remain inactivated Since the neuron cannot respond to another stimulus with the reversal of charges, the Na-K pump has to restore the original charge location. This is called the refractory period. Action Potentials Video | DnaTube.com - Scientific Video Site hill.com/sites/ /student_view0/chapter14/animation__the_nerve_impul se.html

31 Requires the Na-K pump

32

33

34 Fig Axon Plasma membrane Cytosol Action potential Na + Action potential Na + K+K+ K+K+ Action potential K+K+ K+K+ Na +

35

36 Properties of an Action Potential Are all or none depolarization – once threshold is reached (-50 mV) – always creates the same voltage spike regardless of intensity of the stimulus. The frequency of the action potentials increases with intensity of stimulus. Action potentials travel in only ONE direction! The greater the axon diameter, the faster action potentials are propagated.

37

38 Importance of myelin Acts as insulators. Gaps in the myelin are called nodes of Ranvier and serve as points along which the action potential is propagated, increasing the speed. This is called saltatory conduction.

39 The myelin sheath is composed of Schwann cells (PNS) or oligodendrocytes (CNS) that encircle the axon in vertebrates.

40 Saltatory Conduction Voltage channels concentrated at the nodes of Ranvier - jumping action potentials

41 Multiple Sclerosis

42 The Synapse Area between two neurons, between sensory receptors and neurons or between neurons and muscle cells or gland cells

43 Fig Voltage-gated Ca 2+ channel Ca Synaptic cleft Ligand-gated ion channels Postsynaptic membrane Presynaptic membrane Synaptic vesicles containing neurotransmitter 5 6 K+K+ Na + hill.com/sites/ /student_view0/chapter44/transmission_acros s_a_synapse.html What happens at the synapse?

44 Types of synapses Electrical – via gap junctions such as in giant axons of crustaceans **Chemical – electrical impulses changed into chemical signals Arrival of action potential opens Ca + channels (membrane signaling cAMP), causes synaptic vesicles full of NTs to fuse with membrane and pop open

45 Post-synaptic Responses EPSP - excitatory post-synaptic potential --> open Na channels --> inside + May generate an AP IPSP - inhibitory post-synaptic potential opens Cl channels - Cl-in -> more neg > no AP --> opens K channels - K-out - > more neg > no AP

46 EPSP and IPSP

47 Integration of impulses

48 summation Through summation, an IPSP can counter the effect of an EPSP The summed effect of EPSPs and IPSPs determines whether an axon hillock will reach threshold and generate an action potential

49 Summation of impulses

50 Temporal and Spatial Summation

51 Temporal summation occurs with repeated release of nts from one or more synaptic terminals before RP Spatial summation occurs when several different presynaptic terminals release NTs simultaneously

52 Assume a single IPSP has a negative magnitude of -0.5 mV at the axon hillock and that a single EPSP has a positive magnitude of +0.5 mV, for a neuron with initial membrane potential of -70 mV, the net effect of 5 IPSPs and 2 EPSPs spatially would be to move the membrane potential to? Would the impulse continue? -85 mV

53 Neurotransmitters (a)Affect ion channels (b)Affect signal transduction pathways How? Involve cAMP, cAMP protein kinases, GTP, GTP binding proteins

54 After release, the neurotransmitter –May diffuse out of the synaptic cleft –May be taken up by surrounding cells –May be degraded by enzymes

55 Neurotransmitters The same neurotransmitter can produce different effects in different types of cells There are five major classes of neurotransmitters: acetylcholine, biogenic amines, amino acids, neuropeptides, and gases

56 a. ACETYLCHOLINE Found in vertebrate neuromuscular junctions - excitatory at skeletal muscles - inhibitory at heart

57 b) Biogenic Amines (derived from amino acids) epinephrine, norepinephrine (fight or flight), dopamine, serotonin ( involved in sleep, mood, attention, and learning).

58 Blocking epinephrine

59 c) Amino Acids Types: GABA – most common inhibitor Glutamate - excitatory

60 d) Neuropeptides (short chains of amino acids) Types Endorphins – inhibitory, relieves pain Opiates – mimic endorphins

61 e) Gaseous signals Gases such as nitric oxide and carbon monoxide are local regulators in the PNS

62 How do drugs work? Agonists – mimic drugs such as in nicotine mimicking acetycholine Antagonists – block action of NTs such as atropine and curare (poisons) – block acetylcholine and thus prevent nerve firing in muscles – leads to paralysis and death Cocaine and amphetamines block the reuptake of NTs at adrenergic synapses Many antidepressants block reuptake of serotonin so serotonin lingers longer in synaptic cleft.


Download ppt "Nervous System AP Biology Chap 48. Neuron The basic structural unit of the nervous system."

Similar presentations


Ads by Google