Presentation is loading. Please wait.

Presentation is loading. Please wait.

AP Biology 2008-2009 gills alveoli elephant seals Gas Exchange Respiratory Systems.

Similar presentations

Presentation on theme: "AP Biology 2008-2009 gills alveoli elephant seals Gas Exchange Respiratory Systems."— Presentation transcript:


2 AP Biology gills alveoli elephant seals Gas Exchange Respiratory Systems

3 AP Biology

4 Why do we need a respiratory system? O2O2 food ATP CO 2 respiration for respiration Need O 2 in for aerobic cellular respiration make ATP Need CO 2 out waste product from Krebs cycle

5 AP Biology Gas exchange O 2 & CO 2 exchange between environment & cells need moist membrane need high surface area

6 AP Biology Optimizing gas exchange Why high surface area? maximizing rate of gas exchange CO 2 & O 2 move across cell membrane by diffusion rate of diffusion proportional to surface area Why moist membranes? moisture maintains cell membrane structure gases diffuse only dissolved in water High surface area? High surface area! Where have we heard that before?

7 AP Biology Gas exchange in many forms… one-celledamphibiansechinoderms insectsfishmammals endotherm vs. ectotherm size cilia water vs. land

8 AP Biology Evolution of gas exchange structures external systems with lots of surface area exposed to aquatic environment Aquatic organisms moist internal respiratory tissues with lots of surface area Terrestrial

9 AP Biology Gas Exchange in Water: Gills

10 AP Biology Counter current exchange system Water carrying gas flows in one direction, blood flows in opposite direction just keep swimming…. Why does it work counter current? Adaptation!

11 AP Biology Blood & water flow in opposite directions maintains diffusion gradient over whole length of gill capillary maximizing O 2 transfer from water to blood water blood How counter current exchange works front back blood 100% 15% 5% 90% 70%40% 60%30% 100% 5% 50% 70% 30% water counter- current concurrent

12 AP Biology Gas Exchange on Land Advantages of terrestrial life air has many advantages over water higher concentration of O 2 O 2 & CO 2 diffuse much faster through air respiratory surfaces exposed to air do not have to be ventilated as thoroughly as gills air is much lighter than water & therefore much easier to pump expend less energy moving air in & out Disadvantages keeping large respiratory surface moist causes high water loss reduce water loss by keeping lungs internal Why dont land animals use gills?

13 AP Biology Terrestrial adaptations air tubes branching throughout body gas exchanged by diffusion across moist cells lining terminal ends, not through open circulatory system Tracheae

14 AP Biology Lungs Exchange tissue: spongy texture, honeycombed with moist epithelium Why is this exchange with the environment RISKY?

15 AP Biology Alveoli Gas exchange across thin epithelium of millions of alveoli total surface area in humans ~100 m 2

16 AP Biology Negative pressure breathing Breathing due to changing pressures in lungs air flows from higher pressure to lower pressure pulling air instead of pushing it

17 AP Biology Mechanics of breathing Air enters nostrils filtered by hairs, warmed & humidified sampled for odors Pharynx glottis larynx (vocal cords) trachea (windpipe) bronchi bronchioles air sacs (alveoli) Epithelial lining covered by cilia & thin film of mucus mucus traps dust, pollen, particulates beating cilia move mucus upward to pharynx, where it is swallowed

18 AP Biology dont want to have to think to breathe! Autonomic breathing control Medulla sets rhythm & pons moderates it coordinate respiratory, cardiovascular systems & metabolic demands Nerve sensors in walls of aorta & carotid arteries in neck detect O 2 & CO 2 in blood

19 AP Biology Medulla monitors blood Monitors CO 2 level of blood measures pH of blood & cerebrospinal fluid bathing brain CO 2 + H 2 O H 2 CO 3 (carbonic acid) if pH decreases then increase depth & rate of breathing & excess CO 2 is eliminated in exhaled air

20 AP Biology Breathing and Homeostasis Homeostasis keeping the internal environment of the body balanced need to balance O 2 in and CO 2 out need to balance energy (ATP) production Exercise breathe faster need more ATP bring in more O 2 & remove more CO 2 Disease poor lung or heart function = breathe faster need to work harder to bring in O 2 & remove CO 2 O2O2 ATP CO 2

21 AP Biology Diffusion of gases Concentration gradient & pressure drives movement of gases into & out of blood at both lungs & body tissue bloodlungs CO 2 O2O2 O2O2 bloodbody CO 2 O2O2 O2O2 capillaries in lungscapillaries in muscle

22 AP Biology

23 Hemoglobin Why use a carrier molecule? O 2 not soluble enough in H 2 O for animal needs blood alone could not provide enough O 2 to animal cells hemocyanin in insects = copper (bluish/greenish) hemoglobin in vertebrates = iron (reddish) Reversibly binds O 2 loading O 2 at lungs or gills & unloading at cells cooperativity heme group

24 AP Biology Cooperativity in Hemoglobin Binding O 2 binding of O 2 to 1 st subunit causes shape change to other subunits conformational change increasing attraction to O 2 Releasing O 2 when 1 st subunit releases O 2, causes shape change to other subunits conformational change lowers attraction to O 2

25 AP Biology O 2 dissociation curve for hemoglobin Bohr Shift drop in pH lowers affinity of Hb for O 2 active tissue (producing CO 2 ) lowers blood pH & induces Hb to release more O 2 P O 2 (mm Hg) More O 2 delivered to tissues pH 7.60 pH 7.20 pH 7.40 % oxyhemoglobin saturation Effect of pH (CO 2 concentration)

26 AP Biology O 2 dissociation curve for hemoglobin Bohr Shift increase in temperature lowers affinity of Hb for O 2 active muscle produces heat P O 2 (mm Hg) More O 2 delivered to tissues 20°C 43°C 37°C % oxyhemoglobin saturation Effect of Temperature

27 AP Biology Transporting CO 2 in blood Tissue cells Plasma CO 2 dissolves in plasma CO 2 combines with Hb CO 2 + H 2 OH 2 CO 3 H+ + HCO 3 – HCO 3 – H 2 CO 3 CO 2 Carbonic anhydrase Cl– Dissolved in blood plasma as bicarbonate ion carbonic acid CO 2 + H 2 O H 2 CO 3 bicarbonate H 2 CO 3 H + + HCO 3 – carbonic anhydrase

28 AP Biology Releasing CO 2 from blood at lungs Lower CO 2 pressure at lungs allows CO 2 to diffuse out of blood into lungs Plasma Lungs: Alveoli CO 2 dissolved in plasma HCO 3 – Cl – CO 2 H 2 CO 3 Hemoglobin + CO 2 CO 2 + H 2 O HCO 3 – + H +

29 AP Biology

30 Adaptations for pregnancy Mother & fetus exchange O 2 & CO 2 across placental tissue Why would mothers Hb give up its O 2 to babys Hb?

31 AP Biology Fetal hemoglobin (HbF) What is the adaptive advantage? 2 alpha & 2 gamma units HbF has greater attraction to O 2 than Hb low % O 2 by time blood reaches placenta fetal Hb must be able to bind O 2 with greater attraction than maternal Hb

32 AP Biology Dont be such a baby… Ask Questions!!

Download ppt "AP Biology 2008-2009 gills alveoli elephant seals Gas Exchange Respiratory Systems."

Similar presentations

Ads by Google