Download presentation

Presentation is loading. Please wait.

Published byRaegan Taylor Modified over 2 years ago

1
Math Literacy Dena McElligott—Instructional Specialist Emmanuel Cenizal—Coordinator Lee Davidson—Instructional Specialist Wanda Brinkac--Coordinator

2
Essential Questions How do mathematical symbols create a universal language? How does discourse facilitate problem solving and computation? How does using mathematical languages allow us to be more precise in the communication of mathematical ideas? As an instructional leader in my building, how can I promote math literacy?

3
Enduring Understanding Students communicate, make connections, reason, and represent the world quantitatively in order to pose and solve problems. Mathematical communication deepens and clarifies knowledge. As instructional leaders, we need to create an environment where teachers feel safe and are encouraged to take risks.

4
NCTM and Math Literacy Mathematical literacy implies that a person is able to reason, analyze, formulate, and solve problems in a real-world setting. Mathematically literate individuals are informed citizens and intelligent consumers. They have the ability to interpret and analyze the vast amount of information they are inundated with daily in newspapers, on television, and on the Internet.

5
NCTM Process Standards Problem Solving Reasoning and Proof Communication Connections Representations

6
Problem Solving Build new mathematical knowledge through problem solving Solve problems that arise in mathematics and in other contexts Apply and adapt a variety of appropriate strategies to solve problems Monitor and reflect on the process of mathematical problem solving

7
Reasoning and Proof

8
Connections Recognize and use connections among mathematical ideas Understand how mathematical ideas interconnect and build on one another to produce a coherent whole Recognize and apply mathematics in contexts outside of mathematics

9
Representations Create and use representations to organize, record, and communicate mathematical ideas Select, apply, and translate among mathematical representations to solve problems Use representations to model and interpret physical, social, and mathematical phenomena

10
Communication Organize and consolidate their mathematical thinking through communication Communicate their mathematical thinking coherently and clearly to peers, teachers, and others Analyze and evaluate the mathematical thinking and strategies of others; Use the language of mathematics to express mathematical ideas precisely.

11
Why is Communication Important? Communication allows: teachers to diagnose and correct misconceptions in a student’s mathematical thinking. students to state mathematical ideas in their own words which creates conceptual understanding. students to hear multiple representations for the same mathematical idea (flexibility). students to think out loud which helps them to draw upon their prior knowledge and experience. students to become independent thinkers and gain a confidence in their ability to be good problem solvers.

12
Break Out Sessions

13
Essential Questions How does discourse facilitate problem solving and computation? How does using mathematical languages allow us to be more precise in the communication of mathematical ideas? Students communicate, make connections, reason, and represent the world quantitatively in order to pose and solve problems. Mathematical communication deepens and clarifies knowledge. Enduring Understandings

14
Classroom Discourse, Mathematical Rigor, and Student Reasoning: Analyzing the Dimensions of Powerful Mathematics Instruction and Learning Recognition of the need to integrate students’ conceptual understanding, procedural competence and communicative abilities is supported by 30 years of cognitive science research. The effectiveness of discourse-intensive instruction depends significantly on the quality of the mathematical tasks used in instruction. Powerful Mathematics Instruction

15
So….What does this look like in practice?

16
Ordering Many Fractions: Let’s start with 1/3 and 2/5, which fraction is larger? How do you know?

17
Ordering Many Fractions Work in small groups to put the fractions in order from least to greatest Try to think in pictures Only one strategy should include computation Use visual representations Include a written explanation

18
Where do you see communication in this activity? Turn and talk to your shoulder partner about the communication that took place during this process.

19
“Summing” it all up… As an instructional leader in my building, how can I promote math literacy?

20
Principals’ Collaborative Session March 13, 2012 ActivityApproximate Times Direct Instruction Focused on Mathematics Literacy8:00 a.m. – 8:30 a.m. Opening Moves8:30 a.m. – 8:45 a.m. Examination of Text or Media Related to Mathematics Literacy8:45 a.m. – 9:15 a.m. Dilemma Presentation Focused on Mathematics Literacy9:15 a.m. – 9:55 a.m. Closing and Planning for Next Meeting9:55 a.m. – 10:00 a.m. Don’t forget to complete the written reflection form and drop it in the box!

21
Principals’ Collaborative Session March 13, 2012 ActivityApproximate Times Direct Instruction Focused on Mathematics Literacy11:00 a.m. – 11:30 a.m. Opening Moves11:30 a.m. – 11:45 a.m. Examination of Text or Media Related to Mathematics Literacy 11:45 a.m. – 12:15 p.m. Dilemma Presentation Focused on Mathematics Literacy12:15 p.m. – 12:55 p.m. Closing and Planning for Next Meeting12:55 p.m. – 1:00 p.m. Don’t forget to complete the written reflection form and drop it in the box!

22
Principals’ Collaborative Session March 13, 2012 ActivityApproximate Times Direct Instruction Focused on Mathematics Literacy2:00 p.m. – 2:30 p.m. Opening Moves2:30 p.m. – 2:45 p.m. Examination of Text or Media Related to Mathematics Literacy 2:45 p.m. – 3:15 p.m. Dilemma Presentation Focused on Mathematics Literacy3:15 p.m. – 3:55 p.m. Closing and Planning for Next Meeting3:55 p.m. – 4:00 p.m. Don’t forget to complete the written reflection form and drop it in the box!

23
The “New” Mathematics SOL Assessments (an update) Presentation to all Principals, March 13, 2012 Dr. Donald Robertson, Assistant Superintendent ELA

24
Comparing Old to New: Outcomes and Pass Rates Virginia Scores Name of TestFall 2009Fall 2010Fall 2011Fall 2011 VBCPS Algebra I82.1%84.1%49.2%28.1% Algebra II85.3%84.5%53.7%25.9% Geometry81%78.5%63%27.7%

25
Comparing Old to New: Repeated Items Name of TestNumber of Items TOTAL Number of Items NEW Percentage of NEW Items Algebra I502244% Algebra II501836% Geometry501428%

26
The Rigor is in the “Cut” Scores Released “cut” scores for EOC tests in Algebra I, Algebra II, and Geometry Proposed “cut” scores for Math grades 3-8 Many of the questions have been referred to as “test- taking” questions versus “math” questions. For example, using the tools on the online assessment that are not readily available to teachers for students to practice, questions that are multistep with an all-or- nothing measure of correctness, and questions with specific language in the directions that serve to guide finding the answer.

27
The Rigor is in the “Cut” Scores

28

29
Preparing for the Tests Recently, CTL and C&I staff have conducted training at all middle and high schools with math staff. The training focused on identifying power standards and development of practice assessments. Next steps - (1) inform teachers of the SPBQ for the EOC tests, (2) create a plan for teachers to focus on particular objectives over the next 8 weeks that will give students the best chance to pass the test, and (3) create a plan for school administrators to monitor the work.

30
Recent quote to General Assembly by Dr. Patricia Wright, State Superintendent “…Last year, I warned the education subcommittee of the House and Senate money committees that the implementation of these new standards- and corresponding assessments- would have a dramatic impact on accreditation. I repeat this warning today. The new mathematics tests debut this spring- middle and high school students on block schedules are already experiencing the new Algebra I, Algebra II, and Geometry tests- and I guarantee that we will see mathematics pass rates fall sharply when results are reported in the summer…” January 2012

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google