Presentation is loading. Please wait.

Presentation is loading. Please wait.

Control of Eukaryotic Genes

Similar presentations

Presentation on theme: "Control of Eukaryotic Genes"— Presentation transcript:

1 Control of Eukaryotic Genes

2 The BIG Questions… How are genes turned on & off in eukaryotes?
How do cells with the same genes differentiate to perform completely different, specialized functions?

3 Evolution of gene regulation
Prokaryotes single-celled evolved to grow & divide rapidly must respond quickly to changes in external environment exploit transient resources Gene regulation turn genes on & off rapidly flexibility & reversibility adjust levels of enzymes for synthesis & digestion prokaryotes use operons to regulate gene transcription, however eukaryotes do not. since transcription & translation are fairly simultaneous there is little opportunity to regulate gene expression after transcription, so control of genes in prokaryotes really has to be done by turning transcription on or off.

4 Evolution of gene regulation
Eukaryotes multicellular evolved to maintain constant internal conditions while facing changing external conditions homeostasis regulate body as a whole growth & development long term processes specialization turn on & off large number of genes must coordinate the body as a whole rather than serve the needs of individual cells Specialization each cell of a multicellular eukaryote expresses only a small fraction of its genes Development different genes needed at different points in life cycle of an organism afterwards need to be turned off permanently Continually responding to organism’s needs homeostasis cells of multicellular organisms must continually turn certain genes on & off in response to signals from their external & internal environment

5 Points of control The control of gene expression can occur at any step in the pathway from gene to functional protein 1. packing/unpacking DNA 2. transcription 3. mRNA processing 4. mRNA transport 5. translation 6. protein processing 7. protein degradation

6 1. DNA packing How do you fit all that DNA into nucleus?
DNA coiling & folding double helix nucleosomes chromatin fiber looped domains chromosome nucleosomes “beads on a string” 1st level of DNA packing histone proteins have high proportion of positively charged amino acids (arginine & lysine) bind tightly to negatively charged DNA from DNA double helix to condensed chromosome

7 Nucleosomes “Beads on a string” 1st level of DNA packing
8 histone molecules Nucleosomes “Beads on a string” 1st level of DNA packing histone proteins 8 protein molecules positively charged amino acids bind tightly to negatively charged DNA DNA packing movie

8 DNA packing as gene control
Degree of packing of DNA regulates transcription tightly wrapped around histones no transcription genes turned off heterochromatin darker DNA (H) = tightly packed euchromatin lighter DNA (E) = loosely packed H E

9 DNA methylation Methylation of DNA blocks transcription factors
no transcription  genes turned off attachment of methyl groups (–CH3) to cytosine C = cytosine nearly permanent inactivation of genes ex. inactivated mammalian X chromosome = Barr body

10 Histone acetylation Acetylation of histones unwinds DNA
loosely wrapped around histones enables transcription genes turned on attachment of acetyl groups (–COCH3) to histones conformational change in histone proteins transcription factors have easier access to genes

11 2. Transcription initiation
Control regions on DNA promoter nearby control sequence on DNA binding of RNA polymerase & transcription factors “base” rate of transcription enhancer distant control sequences on DNA binding of activator proteins “enhanced” rate (high level) of transcription

12 Model for Enhancer action
Enhancer DNA sequences distant control sequences Activator proteins bind to enhancer sequence & stimulates transcription Silencer proteins bind to enhancer sequence & block gene transcription Much of molecular biology research is trying to understand this: the regulation of transcription. Silencer proteins are, in essence, blocking the positive effect of activator proteins, preventing high level of transcription. Turning on Gene movie

13 Transcription complex
Activator Proteins • regulatory proteins bind to DNA at distant enhancer sites • increase the rate of transcription Enhancer Sites regulatory sites on DNA distant from gene Enhancer Activator Activator Activator Coactivator B F E RNA polymerase II A TFIID H Coding region T A T A Core promoter and initiation complex Initiation Complex at Promoter Site binding site of RNA polymerase

14 3. Post-transcriptional control
Alternative RNA splicing variable processing of exons creates a family of proteins

15 4. Regulation of mRNA degradation
Life span of mRNA determines amount of protein synthesis mRNA can last from hours to weeks RNA processing movie

16 RNA interference NEW! Small interfering RNAs (siRNA)
short segments of RNA (21-28 bases) bind to mRNA create sections of double-stranded mRNA “death” tag for mRNA triggers degradation of mRNA cause gene “silencing” post-transcriptional control turns off gene = no protein produced siRNA

17 Hot…Hot new topic in biology double-stranded miRNA + siRNA
Action of siRNA dicer enzyme mRNA for translation siRNA double-stranded miRNA + siRNA breakdown enzyme (RISC) mRNA degraded functionally turns gene off

18 1990s | 2006 RNA interference “for their discovery of RNA interference — gene silencing by double-stranded RNA” Andrew Fire Stanford Craig Mello U Mass

19 5. Control of translation
Block initiation of translation stage regulatory proteins attach to 5' end of mRNA prevent attachment of ribosomal subunits & initiator tRNA block translation of mRNA to protein Control of translation movie

20 6-7. Protein processing & degradation
folding, cleaving, adding sugar groups, targeting for transport Protein degradation ubiquitin tagging proteasome degradation The cell limits the lifetimes of normal proteins by selective degradation. Many proteins, such as the cyclins involved in regulating the cell cycle, must be relatively short-lived. Protein processing movie

21 Ubiquitin 1980s | 2004 “Death tag” mark unwanted proteins with a label
76 amino acid polypeptide, ubiquitin labeled proteins are broken down rapidly in "waste disposers" proteasomes Since the molecule was subsequently found in numerous different tissues and organisms – but not in bacteria – it was given the name ubiquitin (from Latin ubique, "everywhere") Aaron Ciechanover Israel Avram Hershko Israel Irwin Rose UC Riverside

22 Proteasome Protein-degrading “machine” cell’s waste disposer
breaks down any proteins into 7-9 amino acid fragments cellular recycling A human cell contains about 30,000 proteasomes: these barrel-formed structures can break down practically all proteins to 7-9-amino-acid-long peptides. The active surface of the proteasome is within the barrel where it is shielded from the rest of the cell. The only way in to the active surface is via the "lock", which recognises polyubiquitinated proteins, denatures them with ATP energy and admits them to the barrel for disassembly once the ubiquitin label has been removed. The peptides formed are released from the other end of the proteasome. Thus the proteasome itself cannot choose proteins; it is chiefly the E3 enzyme that does this by ubiquitin-labelling the right protein for breakdown play Nobel animation

23 Gene Regulation 7 6 5 4 2 1 4 3 protein processing & degradation
1 & 2. transcription - DNA packing - transcription factors 3 & 4. post-transcription - mRNA processing - splicing - 5’ cap & poly-A tail - breakdown by siRNA 5. translation - block start of translation 6 & 7. post-translation - protein processing - protein degradation 5 4 initiation of translation mRNA processing 2 1 initiation of transcription mRNA protection mRNA splicing 4 3

24 Turn your Question Genes on!

25 Gene Regulation 7 6 5 4 2 1 4 3 1 & 2. _________________
- ____________________ 3 & 4. _________________ 5. _________________ - ____________________ ____________________ 6 & 7. _________________ 5 4 2 1 4 3

Download ppt "Control of Eukaryotic Genes"

Similar presentations

Ads by Google