Download presentation

Presentation is loading. Please wait.

Published byJustus Sparby Modified over 3 years ago

1
Copulas Univariate Functions Gary G Venter Conditioning with Copulas nLet C 1 (u,v) denote the first partial derivative of C(u,v). F(x,y) = C(F X (x),F Y (y)), distribution of Y|X=x is given by: nF Y|X (y) = C 1 (F X (x),F Y (y)) nC(u,v) = uv, the conditional distribution of V given that U=u is C 1 (u,v) = v = Pr(V

2
Copulas Univariate Functions Gary G Venter Tails of Copulas ASTIN 2001

3
Copulas Univariate Functions Gary G Venter Kendall correlation is a constant of the copula = 4E[C(u,v)] – 1 = 2 d E[C(u 1,...,u d )] – 1 2 d – 1 – 1

4
Copulas Univariate Functions Gary G Venter Frank’s Copula nDefine g z = e -az – 1 nFrank’s copula with parameter a 0 can be expressed as: nC(u,v) = -a -1 ln[1 + g u g v /g 1 ] nC 1 (u,v) = [g u g v +g v ]/[g u g v +g 1 ] nc(u,v) = -ag 1 (1+g u+v )/(g u g v +g 1 ) 2 (a) = 1 – 4/a + 4/a 2 0 a t/(e t -1) dt For a<0 this will give negative values of . nv = C 1 -1 (p|u) = -a -1 ln{1+pg 1 /[1+g u (1–p)]}

5
Copulas Univariate Functions Gary G Venter

6
Copulas Univariate Functions Gary G Venter Gumbel Copula nC(u,v) = exp{- [(- ln u) a + (- ln v) a ] 1/a }, a 1. nC 1 (u,v) = C(u,v)[(- ln u) a + (- ln v) a ] -1+1/a (-ln u) a-1 /u nc(u,v) = C(u,v)u -1 v -1 [(-ln u) a +(-ln v) a ] -2+2/a [(ln u)(ln v)] a- 1 {1+(a-1)[(-ln u) a +(-ln v) a ] -1/a } (a) = 1 – 1/a nSimulate two independent uniform deviates u and v nSolve numerically for s>0 with ue s = 1 + as nThe pair [exp(-sv a ), exp(-s(1-v) a )] will have the Gumbel copula distribution

7
Copulas Univariate Functions Gary G Venter

8
Copulas Univariate Functions Gary G Venter Heavy Right Tail Copula nC(u,v) = u + v – 1 + [(1 – u) -1/a + (1 – v) -1/a – 1] -a a>0 nC 1 (u,v) = 1 – [(1 – u) -1/a + (1 – v) -1/a – 1] -a-1 (1 – u) -1-1/a nc(u,v) = (1+1/a)[(1–u) -1/a +(1– v) -1/a –1] -a-2 [(1–u)(1– v)] -1-1/a (a) = 1/(2a + 1) nCan solve conditional distribution for v

9
Copulas Univariate Functions Gary G Venter

10
Copulas Univariate Functions Gary G Venter Joint Burr nF(x) = 1 – (1 + (x/b) p ) -a and G(y) = 1 – (1 + (y/d) q ) -a nF(x,y) = 1 – (1 + (x/b) p ) -a – (1 + (y/d) q ) -a + [1 + (x/b) p + (y/d) q ] -a nThe conditional distribution of y|X=x is also Burr: nF Y|X (y|x) = 1 – [1 + (y/d x ) q ] -(a+1), where d x = d[1 + (x/b) p/q ]

11
Copulas Univariate Functions Gary G Venter Partial Perfect Correlation Copula Generator nAssume logical values 0 and 1 are arithmetic also nh : unit square unit interval nH(x) = 0 x h(t)dt nC(u,v) = uv – H(u)H(v) + H(1)H(min(u,v)) nC 1 (u,v) = v – h(u)H(v) + H(1)h(u)(v>u) nc(u,v) = 1 – h(u)h(v) + H(1)h(u)(u=v)

12
Copulas Univariate Functions Gary G Venter h(u) = (u>a) nH(u) = (u – a)(u>a) (a) = (1 – a) 4

13
Copulas Univariate Functions Gary G Venter h(u) = u a nH(u) = u a+1 /(a+1) (a) = 1/[3(a+1) 4 ] + 8/[(a+1)(a+2) 2 (a+3)]

14
Copulas Univariate Functions Gary G Venter The Normal Copula nN(x) = N(x;0,1) nB(x,y;a) = bivariate normal distribution function, = a nLet p(u) be the percentile function for the standard normal: nN(p(u)) = u, dN(p(u))/du = N’(p(u))p’(u) = 1 nC(u,v) = B(p(u),p(v);a) nC 1 (u,v) = N(p(v);ap(u),1-a 2 ) nc(u,v) = 1/{(1-a 2 ) 0.5 exp([a 2 p(u) 2 -2ap(u)p(v)+a 2 p(v) 2 ]/[2(1- a 2 )])} (a) = 2arcsin(a)/ n a: 0.156430.382680.707110.923880.98769 0.100000.250000.500000.750000.90000

15
Copulas Univariate Functions Gary G Venter

16
Copulas Univariate Functions Gary G Venter Tail Concentration Functions nL(z) = Pr(U

17
Copulas Univariate Functions Gary G Venter

18
Copulas Univariate Functions Gary G Venter Cumulative Tau –1+4 0 1 0 1 C(u,v)c(u,v) d v d u nJ(z) = –1+4 0 z 0 z C(u,v)c(u,v) d v d u/C(z,z) 2 nGeneralizes to multi-variate case

19
Copulas Univariate Functions Gary G Venter

20
Copulas Univariate Functions Gary G Venter Cumulative Conditional Mean nM(z) = E(V|U

21
Copulas Univariate Functions Gary G Venter

22
Copulas Univariate Functions Gary G Venter HRT Gumbel Frank Normal Parameter0.9681.674.920.624 Ln Likelihood124157183176 Tau0.340.400.450.43

23
Copulas Univariate Functions Gary G Venter

Similar presentations

OK

9.1 Notes Geometric Mean. 9.1 Notes Arithmetic mean is another term that means the same thing as average. The second do now question could have been,

9.1 Notes Geometric Mean. 9.1 Notes Arithmetic mean is another term that means the same thing as average. The second do now question could have been,

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on total parenteral nutrition definition Ppt on index numbers in excel Ppt on history of atom Ppt on topic search engine Ppt on cross docking services Ppt on metrics in software project management Ppt on question tags rules Ppt on carbon arc welding Ppt on panel discussion questions Ppt on unity in diversity symbol