Presentation is loading. Please wait.

Presentation is loading. Please wait.

DINAMIKA RACUN LINGKUNGAN DI DALAM EKOSISTEM Oleh Sudrajat Dosen FMIPA, Fak.Kedokteran, Fak,Kesmas, Pasca Sarjana Ilmu Lingkungan dan Staf Peneliti PPLH.

Similar presentations

Presentation on theme: "DINAMIKA RACUN LINGKUNGAN DI DALAM EKOSISTEM Oleh Sudrajat Dosen FMIPA, Fak.Kedokteran, Fak,Kesmas, Pasca Sarjana Ilmu Lingkungan dan Staf Peneliti PPLH."— Presentation transcript:


2 DINAMIKA RACUN LINGKUNGAN DI DALAM EKOSISTEM Oleh Sudrajat Dosen FMIPA, Fak.Kedokteran, Fak,Kesmas, Pasca Sarjana Ilmu Lingkungan dan Staf Peneliti PPLH Universitas Mulawarman Samarinda 2005

3 Xenobiotik : Merupakan bahan asing bagi tubuh makhluk hidup, antara lain adalah racun. Di alam banyak sekali racun, termasuk polutan-polutan kimia dari pabrik, kendaraan dan lainnya. Zat kimia / xenobiotik akan mengalami transportasi ke berbagai kompartemen lingkungan atau transformasi apabila terdapat zat yang dapat bereaksi dengannya membentuk senyawa lain.



6 PEMAJANAN RACUN-RACUN YANG UMUM DI SEKITAR KITA UV radiation PM mercury indoor air pesticides & toxics biologicals lead ozone asbestos ? ? ? ? ? ? ? ? ?

7 Kasus Bhopal December 3-4, 1984: 40 tonnes of methyl iso-cyanate (MIC) released from Union Carbide plant at Bhopal Accidental release caused by leakage of water into MIC storage tank None of the six safety systems worked Safety standards and maintenance system ignored for months Complete absence of community information and emergency procedures Public alarm system operated after the gas had leaked for nearly four hours

8 Industrial disaster Industrial disasters are caused by chemical, chemical, mechanical, civil, electrical, or other process failures due to accident, negligence or incompetence, in an industrial plant which may spill over to the areas outside the plant causing damage to life and property.

9 Chemical disasters are occurrence of emission, fire or explosion involving one or more hazardous chemicals in the course of industrial activity or storage or transportation or due to natural events leading to serious effects inside or outside the installation likely to cause loss of life and property including adverse effects on the environment. Chemical disaster

10 Major industrial disasters that shaped public policy Triangle Factory Fire New York (USA) garment workers died in fire Minamata Mercury Disaster (Japan) ,000 people suffered, severe mercury poisoning symptoms, deformities or death Seveso Dioxin Disaster (Italy) ,000 animals died, 70,000 slaughtered to prevent dioxins entering food chain Bhopal Gas Disaster (India) ,000 killed, over 500,000 affected

11 Bhopal Gas Tragedy Worst industrial disaster in history 2,000 people died on immediate aftermath Another 13,000 died in next fifteen years persons dying every month 520,000 diagnosed chemicals in blood causing different health complications 120,000 people still suffering from – Cancer – Tuberculosis – Partial or complete blindness, – Post traumatic stress disorders, – Menstrual irregularities Rise in spontaneous abortion and stillbirth

12 Second generation effect ICMR, IMA, AMA studies show – Children born with genetic defects – Growth retardation in boys – Hormonal chaos among girls Ground water contamination with high level of mercury, lead, nickel, VOCs and HCH High prevalence of skin and gastro-intestinal diseases Bioaccumulation of toxins found in vegetables and breast milk


14 Chisso Corporation Chisso = nitrogen – Produced fertilizer 1907: Chisso Corp. builds a fertilizer plant in the Minamata. Job openings 1925: plant begins dumping untreated wastewater into Minamata Bay – Kills fish – Fisherman Payoffs

15 Chisso Corporation 1932 : Chisso plant begins to produce acetaldehyde to be used in the production of plastic, perfume and drugs. Acetaldehyde is made from acetylene and water with a mercury catalyst. After WWII plastic production boomed and Chisso Corp. grew. By 1970: Chisso brought Japan 60% of its income and owned nearly 70% of the land in Minamata.

16 Bizarre Behavior in Animals Early 1950s: – Dead fish wash ashore – Crows fall out of sky – Suicidal dancing cats Mercury moves up the food chain.

17 Mid 1950s: Behavior Seen in Humans Behaviors witnessed: – Loss of motor control in hands – Violent tremors – Swaggered walk – Insanity Cat-dancing disease Nobody knew the cause of the epidemic. – Many hid for fear of ridicule ectsSpring03/ebarker/Minamata%20Web%20Page.htm

18 Putting the Pieces Together 1956: Researchers at Chisso Corp. Hospital experiment on cats with wastewater from the Chisso plant. They warn Chisso corp. Chisso corp. redirects the flow of wastewater to avoid being caught. – A larger geographical area contaminated. – Children born with horrifying deformities.

19 Putting the Pieces Together 1968: Government ran Public Health service traces the contamination to the Minamata Chisso plant. Government halts the production of acetaldehyde 1972: Government publically announces Chisso Corps part in the Minamata epidemic and orders Chisso Corp to pay compensation to the families that were affected. 35dc782654b21d ca000d8c50?OpenDocument

20 The Aftermath tons of methyl mercury was dumped into the Bay 10,000 people affected by Minamata disease. – 3,000 died Compensation has been given to families as recently as – Highest compensation for the disaster was just under $3,000.

21 Centers for Disease Control and Prevention

22 Methylmercury : In the Body Methylmercury exposure in humans is from consumption of fish, marine mammals, and crustaceans 95% of fish-derived methylmercury is absorbed into the gastrointestinal tract and distributed throughout the body – Highest in concentration in hair

23 Minamata Disease in the Nervous System Areas in red show areas typically affected by the presence of methylmercury in the system. The lesions show characteristic signs and symptoms in Minamata disease. 1. Gait disturbance, loss of balance (ataxia), speech disturbance (Dysarthria) 2. Sight disturbance of peripheral areas in the visual fields (constriction of visual fields) 3. Stereo anesthesia (Disturbance of sensation) 4. Muscle weakness, muscle cramp (disturbance of movement) 5. Hardness of hearing (hearing disturbance) 6. Disturbance of sense of pain, touch or temperature (Disturbance of sensation) National institute of Minamata Disease Archives

24 Symptoms of the Disease Mild – Ataxia – Muscle weakness – Narrowed field of vision – Hearing and speech damage Severe cases cause – Insanity – Paralysis – Coma – Death W. Eugene Smith Tomoko Uemura in Her Bath Minamata, 1972

25 More Symptoms A significant effect of Minamata is the onset of symptoms similar to those of cerebral palsy Fetal Minamata Disease – A pregnant mother ingests toxic fish and the methylmercury concetrates inside the placenta. – Harms the fetus while the mother is relatively unaffected KURA#

26 These are all children with congenital (fetal) Minamata Disease due to intrauterine methyl mercury poisoning (Harda 1986).

27 Examples of chemicals in food, air, water linked to birth defects Cross placenta to embryo Defects of brain, nerves, heart Defects of skeleton (often limbs) Blindness, deafness Spasticity Mental retardation Defects of heart, brain Blindness, deafness Decreased fetal growth Defects of face (cleft palate/lip) Emotional & learning problems

28 Mercury: The Basics Mercury (Hg) is the only metal that is liquid at room temperature. It melts at o C and boils at o C. Mercury conducts electricity, expands uniformly with temperature and easily forms alloys with other metals (called amalgams). – For these reasons, it is used in many products found in homes and schools.

29 Mercury Chemistry Mercury exists in three oxidation states: – Hg 0 (elemental mercury). – Hg 2 2+ (mercurous). – Hg 2+ (mercuric). Mercurous and mercuric form numerous inorganic and organic chemical compounds. – Organic forms of mercury, especially methyl mercury, CH 3 Hg(II)X, where X is a ligand (typically Cl - or OH - ) are the most toxic forms.

30 Uses of Mercury We use its unique properties to conduct electricity, measure temperature and pressure, act as a biocide, preservative and disinfectant and catalyze reactions. – It is the use of mercury in catalysis that contributed to the events in Minamata. Other uses include batteries, pesticides, fungicides, dyes and pigments, and the scientific apparati.

31 Mercury in the Environment Upwards of 70% of the mercury in the environment comes from anthropogenic sources, including: – Metal processing, waste incineration, and coal-powered plants. Natural sources include volcanoes, natural mercury deposits, and volatilization from the ocean. Estimates are that human sources have nearly doubled or tripled the amount of mercury in the atmosphere.


33 The Aquatic Mercury Cycle


35 Methylmercury concentrations Freshwater fish ppm Ocean fish ppm Predator fish> 1.0ppm Fish in polluted water> 10ppm Fish from Minamata Bay~ 50ppm Whale meat~4ppm Whale liver>1000ppm Reference dose 0.1 g/kg bw/day 135-lb. woman: 1.5oz. Swordfish or 7 oz. tuna/week 50-lb. child: 0.5oz. Swordfish or 2.6 oz. tuna/week

36 Methylmercury poisoning Minamata Japan, 1930s-1950s

37 Four Major Pollution di Jepang CaseAccusedRuling Minamata Disease (organic mercury in sea water) Chisso Corp.Plaintiff wins in 1973 Itai-itai Disease (cadmium in river water) Mitsui KinzokuPlaintiff wins in 1972 Niigata Minamata Disease (organic mercury in river water) Showa DenkoPlaintiff wins in 1971 Yokkaichi Asthma (air pollution by petrochemicals) Mitsubishi Petrochemicals etc Plaintiff wins in 1972 Yokkaichi 1961Yokkaichi today Award winning photo of Minamata Disease victim

38 Congenital Minamata disease; Mercury toxicity, Japan 1955 Microcephaly Cerebral palsy / spastic Mental deficits Malformation of ears, heart, skeleton, eyes Minamata Bay

39 Bhopal, India This presentation is based on the text articles, Bhopal, pp , and Chemical Safety in Developing Countries, the lessons of Bhopal, pp In Dec. 3, 1984, an explosion at the Union Carbide plant released a deadly cocktail of poison gas made up of methyl isocyanante, hydrogen cyanide, monomethyl amine, carbon monoxide and up to 20 other chemicals. 4 months later report on 1,430 deaths. By 1999, the toxic gas killed at least 16,000 according to local estimates; tens of thousands continue to suffer.

40 Arsenic toxicity from well waters in Bangladesh and CCA Bangladesh may be heading for an epidemic of arsenic poisoning with an estimated 60 million regularly ingesting arsenic through drinking contaminated groundwater Surveys of groundwater used for drinking and cooking have identified unacceptably high concentrations of arsenic in several thousand deep tube wells, Dr Karim said. Some wells contain 0.4 mg/l of arsenic, 40 times the acceptable concen BMJ March 25; 320(7238): 826. Half of Bangladesh population at risk of arsenic poisoning

41 Dioxin and Chloracne VIENNA, Austria (CNN) -- Dioxin poisoning caused the disfiguring illness afflicting Ukrainian opposition presidential candidate Viktor Yushchenko, doctors at an Austrian hospital said Saturday. Doctors said at a news conference that they suspect a "third party" administered the poison in September, possibly by putting it in Yushchenko's soup.

42 External to Internal environment..a hint of integration?

43 PESTICIDE EXPOSURE ISSUES OCCUPATIONAL Production Farmers Child labor Women in reproductive age Exterminators ENVIRONMENTAL Domestic use Pesticides in: food water soil Spillage (su do ra) Waste

44 II. DINAMIKA POLUTAN DI DALAM EKOSISTEM Mekanisme kerja suatu polutan/ zat terhadap suatu organ sasaran pada umumnya melewati suatu rantai reaksi yang dapat dibedakan menjadi 3 fase utama : a) Fase Eksposisi b) Fase Toksokinetik c) Fase Toksodinamik ( Lihat gambar 2.1.).

45 Skema dampak pencemaran polutan terhadap makhluk hidup ( dimodifikasi dari : Holdgate, 1979)

46 2.1). Fase Eksposisi : Merupakan ketersediaan biologis suatu polutan di lingkungan dan hal ini erat kaitannya dengan introduksi oleh manusia. Selama fase eksposisi, zat beracun dapat diubah melalui berbagai reaksi kimia/fisika menjadi senyawa yang lebih toksis atau lebih kurang toksis. Jalur intoksikasinya lewat Oral, Saluran Pernafasan dan Kulit.

47 Faktor-faktor yang mempengaruhi sifat polutan tersebut adalah atmosfer, air dan biota. Transportasi dan transformasi zat/polutan di lingkungan berhubungan erat dengan sifat-sifat fisikokimia polutan; proses transportasi polutan di lingkungan dan transformasi polutan yang terjadi di lingkungan. Pemaparan bahan polutan ke lingkungan akan mengalami berbagai proses transformasi tergantung atas media transportasinya antara lain air, udara, tanah dan biota ( Connel Des. W. and Gregory J. Miller, 1984).

48 Gb. Interaksi xenobiotik dengan berbagai faktor di lingkungan ( Sumber : McKinney, 1981).

49 2.1.2.Media Transpor Media transpor dapat berupa : -Udara -Air -Tanah -Makanan -Organisme -Rantai Makanan -Dll


51 PERILAKU POLUTAN DI LINGKUNGAN Dipengaruhi oleh kompartemen penyusun bumi yakni : -Udara -Air -Tanah -Biota Sifat-sifat kimiawi dan mekanisme yang mengatur bentuk penyebaran polutan di dalam kompartemen dan di antara kompartemen penyusun lingkungan tersebut merupakan hal yang penting untuk dikaji. Aspek-aspek tersebut antara lain : LAJU PERPINDAHAN ZAT KIMIA DAN ENERGI DI DALAM ALAM DAN PROSES PENYEBERANGAN POLUTAN TSB ANTAR KOMPARTEMEN






57 PROSES PERUBAHAN BENTUK Proses perubahan bentuk polutan di perairan meliputi hidrolisis, fotolisis, degradasi secara mikroorganisme dan oksidasi.

58 PROSES BIODEGRADASI Biotransformasi ( perubahan bentuk biologis) dan biodegradasi polutan oleh mikroorganisme ( bakteri, jamur, protozoa dan ganggang) merupakan proses pembuangan dan perubahan yang penting dalam air, sedimen dan tanah. Reaksi mencakup oksidasi, reduksi, hidrolisis dan terkadang penataan ulang dan dipengaruhi oleh bangun molekul dan kepekatan zat polutan, sifat alamiah mikroorganisme, keadaan lingkungan dan suhu.

59 Dalam udara akan mengalami fotolisis, reaksi; dalam air akan mengalami hidrolisis, foto-lisis, degradasi oleh mikrobiota, oksidasi; dalam tanah akan mengalami proses fotolisis, degradasi dan pada biota akan mengalami proses metabolisme ( Lihat gambar 3 ). Jika suatu polutan/zat kimia mengalami kontak dengan suatu organisme, maka terjadinya efek biologi atau efek toksis setelah proses absorbsi polutan tersebut ke dalam tubuh organisme.

60 Umumnya hanya bagian zat yang berada dalam bentuk terlarut, terdispersi secara molekul yang dapat diabsorbsi. Penyerapan ini sangat ditentukan oleh faktor kadar zat dan lamanya bersentuhan antara zat yang terdapat dalam bentuk yang dapat diabsorpsi dengan permukaan organisme yang berkemampuan mengabsorbsi zat tersebut. Pada pencemaran lingkungan, bagian dosis yang dapat diabsorbsi menentukan derajat eksposisi yang efektif terhadap organisme.

61 2.2. Fase Toksokinetik : Hanya sebagian dari jumlah zat yang diabsorpsi mencapai organ target suatu zat toksis di dalam tubuh organisme, yakni di lokasi jaringan/molekul yang sesuai. Dibedakan atas proses -proses : - Absorbsi dan distribusi ( Invasi) - Biotransformasi - Akumulasi - Ekskresi



64 Routes of administration Routes of administration Drug half-life varies as a function of route of administration Half-life = time for plasma drug conc. to fall to half of peak level



67 2.3. Fase Toksodinamik : Suatu kerja zat toksis pada umumnya adalah hasil interaksi dari sejumlah proses yang sangat rumit dan kompleks.

68 a) Lewat interaksi kimia antara suatu zat atau metabolitnya dengan substrat biologi akibat terbentuknya ikatan kimia kovalen yang tak bolak-balik atau terjadinya perubahan substrat biologi sebagai akibat dari suatu perubahan kimia zat. b) Lewat interaksi yang bolak-balik ( reversible) antara zat asing dengan substrat biologi. Hal ini menyebabkan suatu perubahan fungsional, yang lazimnya hilang bila zat tersebut dieliminir dari plasma.

69 PENYEBARAN RACUN LINGK. DI DALAM TUBUH MANUSIA : - Protein plasma mengikat senyawa asing HATI DAN GINJAL - Protein plasma mengikat senyawa asing HATI DAN GINJAL - Bertugas untuk mengeluarkan senyawa asing. Hati berkapasitas merubah senyawa racun ( biotrans-formasi) menjadi tidak aktif). - LEMAK Tempat penyimpanan penting bagi senyawa yang larut dalam lemak ( mis. DDT, PCB, ) Tempat penyimpanan penting bagi senyawa yang larut dalam lemak ( mis. DDT, PCB, ) - TULANG Berfungsi sebagai penyimpan senyawa Flour, Pb, Strontium. Berfungsi sebagai penyimpan senyawa Flour, Pb, Strontium.


71 MEKANISME KERJA POLUTAN THDP BAGIAN TUBUH ORGANISME - Interaksi dengan sistem enzim : Inhibisi enzim tak bolak balik Inhibisi enzim secara reversible Pemutusan Reaksi Biokimia Sintesis Zat mematikan Pengambilan ion logam yang penting untuk kerja enzim Inhibisi penghantaran elektron dalam rantai respirasi

72 MEKANISME KERJA POLUTAN THDP BAGIAN TUBUH ORGANISME - Inhibisi pada transpor oksigen karena gangguan pada hemoglobin Keracunan karbon monoksida Pembentukan Metheglobin dan Sulfahemoglobin Proses Hemolitik

73 - Interaksi dengan Fungsi Umum Sel Kerja Narkose Pengaruh Penghantaran Rangsang Neurohumor - Gangguan pada sintesis DNA dan RNA Kerja Sitostatika Kerja Imunsupresiva Kerja Mutagenik Kerja Karsinogenik

74 - Kerja Teratogenik - Reaksi Hipersensitif ( Reaksi alergi) Reaksi fotoalergik Sensibilisasi cahaya Reaksi fototoksis

75 Iritasi Kimia langsung pada Jaringan Kerusakan kulit akibat zat kimia Gas yang merangsang Gas air mata Zat yang berbau - Toksisitas pada Jaaringan - Penimbunan ( Sekuestrasi) Zat asing Penimbunan dalam jaringan lemak Penimbunan dalam Tulang Pneumokoniosis


77 Gb Skematik Mekanisme metabolik zat racun di luar hati dan di dalam hati


79 EFEK BIOLOGIS MERUPAKAN RESULTANTE AKHIR DARI SEJUMLAH PROSES YANG SANGAT KOMPLEKS, YAKNI INTERAKSI ANTARA FUNGSI HOMEOSTASISNYA DENGAN XENOBIOTIK. Jika proses homeostasis gagal, karena berbagai hal misalnya dosis terlalu tinggi, paparan konsentrasi terlalu pekat dan kontinyu, keadaan gizi kurang, dstnya maka akan terjadi efek biologis yang diekspresikan bermacam-macam.

80 Tabel 1. Rangkuman beberapa pengaruh biokimia dan fisiologis penting dari suatu zat beracun. NoSasaranProses yang Terganggu 1.Membran sela.Perubahan atau modifikasi permeabilitas memberan b. Pengacauan sistem transportasi membran sel 2.Enzim Inhibisi dapat balik atau tidak balik dari enzim (koenzim, subtrat atau pengaktif logam), oleh zat kimia 3.Metabolisme Lemak Pengacauan metabolisme lemak dapat menyebabkan kegagalan fungsi hati, termasuk akumulasi lemak patologis dalam hati dan kapasitas lemak untuk mengsintesis kolesterol dapat digagalkan.

81 Tabel 1. Rangkuman beberapa pengaruh biokimia dan fisiologis penting dari suatu zat beracun. NoSasaranProses yang Terganggu 4. Biositensis Protein Sintesis zat protein dapat dipengaruhi oleh sejumlah besar zat eksogenus, terutama melalui penekanan kapasitas protein untuk mensintesis yang bertempat di dalam reticulkum kasar endoplasmik (r ER) di dalam sitoplasma. Dalam beberapa kasus, salah satu pengaruh dapat merangsang timbulnya pertambahan sintesis protein mikrosomal. 5. Sistem enzim Mikrosomal Pergantian dalam fungsi enzim mikrosomal- rangsangan atau inhibisi yang diinduksi oleh banyak zat kimia di lingkungan. 6. Proses Pengaturan dan Pertumbuhan Struktur atau kegiatan enzim pengatur dapat diubah dan sintesis, penyimpanan, pelepasan atau pengasingan hormon dapat digagalkan oleh zat beracun dalam berbagai cara, penurunan laju pertumbuhan dapat mengikuti gangguan kimiawi jalur dan laju metabolisme.

Download ppt "DINAMIKA RACUN LINGKUNGAN DI DALAM EKOSISTEM Oleh Sudrajat Dosen FMIPA, Fak.Kedokteran, Fak,Kesmas, Pasca Sarjana Ilmu Lingkungan dan Staf Peneliti PPLH."

Similar presentations

Ads by Google