Download presentation

1
**Noise In Photodiode Applications**

By Art Kay and Bryan Zhao ( 赵 伟 ) June 1, 2011

2
**Contents Noise Review Photodiode Review Photodiode Noise Theory**

Bandwidth and Stability OPA827 Hand Calculation OPA827 Tina Spice Analysis OPA827 Measurement Example

3
Noise Review

4
**Intrinsic Noise Error Source Generated by circuit itself (not pickup)**

Calculate, Simulate, and Measure

5
**Time Domain – White noise**

normal distribution This slide shows the time domain waveform for broadband noise. The distribution for broadband noise is also shown; note that it is Gaussian.

6
**What is Spectral Density? (Noise per unit frequency)**

7
**Convert Spectral Density to RMS Convert RMS to Peak-to-Peak**

8
**Why Photodiode Noise? Noise is a key parameter in photodiode design**

Wide bandwidth (integrate more noise) Low signal levels (noise more critical) Photodiode amplifier noise is more complex Parasitic capacitance and sensor capacitance Poles and zeros Gain peaking

9
**What can we do with the photodiode knowledge?**

The competition is in trouble! Our new friends from National. TI

10
Photodiode Review

11
**Photodiode Basics Introduction Photodiode type**

Photodiodes convert light into current or voltage. Photodiode type PN photodiode – more wavelength selective PIN photodiode – wide spectral range (less selective) APD (Avalanche photodiode) – sensitive to low light, fast

12
**Basic Photodiode Physics**

Principle of Operation: . - The P-layer material at the active surface and the N material at the substrate form a PN junction which operates as a photoelectric converter. - When light strikes a photodiode, the electron within the crystal structure becomes stimulated. If the light energy is greater than the band gap energy Eg, the electrons are pulled up into the conduction band, leaving holes in their place in the valence band. - These electron-hole pairs occur throughout the P-layer, depletion layer and N-layer materials. In the depletion layer the electric field accelerates these electrons toward the N-layer and the holes toward the P-layer. - This results in a positive charge in the P-layer and a negative charge in the N-layer. If an external circuit is connected between the P- and N-layers, electrons will flow away from the N-layer, and holes will flow away from the P-layer toward the opposite respective electrodes.

13
**Photodiode Basics Figure1.3 Photodiode Equivalent Circuit**

Figure1.4 Current VS. Voltage Characteristics

14
Photodiode Basic Figure1.4 Photodiode Equivalent Circuit Use left equivalent circuit, the output current is given as : Figure1.5 Current VS. Voltage Characteristics The open circuit voltage Voc is the output voltage when Io equals 0. Thus Voc becomes:

15
**Photodiode and Control Source TINA model**

Light exciting source: 1) Use VG1 and VG2 voltage sources to simulate light power wave. 2) Use R1 and C1 shape light signal 3) The Voltage Control Current Source (VCCS1) simulates photodiode sensitivity. Photodiode Equivalent Circuit: 1), Current Source Id simulates Dark current 2), Diode is a ideal diode 3), Cd and Rd simulate photodiode's junction capacitor and dark Resistance. 4), Rs is series resistor, which is far smaller than Rd.

16
Photodiode Noise Theory

17
**Photo-Diode Amp Noise Model**

18
Photodiode noise The lower limits of light detection for photodiodes are determined by the noise characteristics of the device. The photodiode noise in is the sum of the thermal noise (or Johnson noise) ij of a resistor which approximates the shunt resistance and the shot noise isD and isL resulting from the dark current and the photocurrent. If IL >> 0.026/Rsh or IL >> ID, the shot noise becomes predominant. The lower limit of light detection for a photodiode is usually expressed as the intensity of incident light required to generate a current equal to the noise current . Essentially this is the noise equivalent power (NEP).

19
**Noise Gain Simplify the model to compute Noise Gain**

Gain seen by the noise voltage source.

20
Noise Gain

21
Noise Gain

22
Noise Gain

23
**Simulating Noise gain and noise bandwidth**

Break the loop to measure Aol, 1/B, and I to V Gain

24
**Voltage Noise eni , eno and Eno**

Region 1 Region 2 Region 3 Region 4 Region 5 Eno4 Eno5 Eno3 Eno1 Eno2

25
**Voltage Noise eni , eno and Eno**

Region 1 noise: Region 2 noise: Region 3 noise: Region 4 noise: Region 5 noise: Total voltage noise:

26
**Voltage Noise eni , eno and Eno**

Log scale R.1 R.4 R.2 R.3 R.5 Eno^2 Linear scale eno Linear scale Two left figures obviously present: although 1/f noise density is very large in noise density, but noise gain and bandwidth make region (3,4,5) contribute to output noise (Eno) most. Noise gain effect region is controlled by Ci,Cf,Rf,fc. Compensation design and op amp selection is critical for noise characters.

27
**Resistor Noise and Current Noise**

Current noise and resistor noise are limited by the transimpedance (I-V gain) bandwidth Poles Kn 1 1.57 2 1.22 3 1.16

28
Bandwidth and Stability

29
**Parasitic Capacitance Limits the Bandwidth**

Max bandwidth with Min Cf Low Cf may be unstable Wide BW increases noise As shown Cf=Cs (stray cap) Higher feedback resistor value potentially make parasitic capacitance bypass dominate the photodiode amplifier’s response and set the circuit bandwidth. Good construction parasitic limit Cs around 0.5pF.

30
**Feedback Capacitance Required for Stability**

Noise Gain is key to stability Also called 1/Beta (in stability analysis) ROC = Rate of Closure ROC = (Aol slope) – (1/Beta slope) Unstable when ROC > 20dB/decade

31
**Feedback Capacitance Required for Stability**

Applying a Step Input shows instability at output

32
**Choosing a Minimum Cf for Stability**

33
OPA827 Hand Calculation

34
**Noise Model for Simple Transimpedance Amp**

35
**Example Photodiode: PDB-C158**

Unfortunately Cj is not specified at Vr=0V. We called the manufacturer for this info Cj=70pF for Vr=0V

36
**Calculate Diode Current Noise**

37
**OPA827 Noise Hand Calculation (key numbers)**

38
**OPA827 Noise Hand Calculation**

39
**Poles and Zeros in Noise Gain Curve**

40
**1/f (flicker) Noise Corner**

41
**Output Noise from OPA Noise Voltage**

42
**Thermal (Resistor) Noise at Output**

43
**Current Noise to Voltage Noise at Output**

44
The Final Total Noise

45
**Reducing Noise (Higher Cf = Lower BW & Noise)**

46
**Flux Capacitor Advantage Disadvantage ADS1118 Reduces noise to zero**

Available on E-Bay Disadvantage Requires 1.21 gigawatts Size Quarter

47
OPA827 Tina Spice Analysis

48
OPA827 – test the model Low Noise : 4nV/√Hz at 1kHz Low Offset Voltage: 150µV max JFET Input: IB= 15pA typ Wide Bandwidth: 22MHz The noise performance is the same as datasheet.

49
**Simulated Spectral Density and Total Noise**

Output Noise Density Calculated (rms) Simulated 116.7uV 109.1uV Total Output Noise

50
OPA827 Measurement Example

51
**Validating Test Equipment Capability**

52
**Tektronix DPO 4034 Oscilloscope**

STDEV: 48uV (same as RMS) P-P: *STDEV=319uV 40s P-P: 320uV Set DC couple, 20MHz bandwidth limit Short input channel to measure noise floor

53
**Agilent 4395A Spectrum Analyzer**

Frequency Range: 10Hz~500MHz Noise floor: 10nV/rtHz Input Impedance: 50Ω Reference voltage Noise Floor: 10nV/rtHz

54
**The Noise Floors are Not Good Enough**

55
**Solution: Use A Post Amp What amp do we Choose?**

56
**Use OPA847 as post amplifier**

Wideband, Ultra-Low Noise, Voltage Feedback, Operational Amplifier At the gain of 150, the bandwidth is 26MHz 0.85nV/Hz Input Voltage Noise 2.5pA/Hz Input Current Noise ±100uV Input Offset Voltage (Typical)) 575uVrms post amplifier noise in 20MHz bandwidth.

57
**Post Amplifier Relatively small error!**

Gain=150 Vn827 = 109.4uV rms Vnpost = 16.03mV rms Vnpost/Gain = 16.03mV/150 = 106.8uV rms

58
Test the Noise Floor

59
**Test The Noise Floor – Post Amp Noise Scope**

Simulated (rms) Measured 575uV 518uV STDEV: 518uV P-P: *STDEV=3.4mV 40s P-P: mV

60
**Hardware Connections PDB-C158-ND photodiode**

70pF junction capacitance at Vr=0 V 100dB I-V gain 4pF compensation capacitor ±5V power supply.

61
**Shield the Circuit if Possible**

Power Supply Vcc,Vss,GND Input & Output BNC connectors Shield

62
**Divide by Gain for OPA827 Output Noise**

63
**Measured Total Output Noise (DPO 4034 Scope)**

OPA847 Measured at Scope: STDEV: mV P-P: *STDEV=143mV 40s P-P: 170mV At OPA827 (DUT) Output: Divide by gain Vn827 = 21.7mV/150 = 144.6uV Calculated (rms) Simulated Measured 116.7uV 109.1uV 144.6uV

64
**Measured Spectral Density 4395A Spectrum Analyzer**

Measurement 4395A Linear Scale Agilent 4395A Spectrum Analyzer test 1Hz~20MHz span, 3uV/div, REF=24uV. The tested noise density curve shape is the same as simulation. Tina Spice Linear Scale Tina Spice Log Scale Linear Scale

65
**OPA827-Noise Density 4395A Spectrum Analyzer**

66
**Before Questions, I must ask….**

Thanks Bryan Zhao ( 赵 伟 ) Matt Hann Collin Wells, Peter Semig, Curtis Mayberry References Jerald Graeme <Photodiode Amplifiers> Art Kay < Op-Amp Noise Calculation and Measurement > HAMAMATSU <Photodiode Technical Information> Tim Green <Operational amp stability> Before Questions, I must ask….

67
**Do I move over to the dark side?**

You will move to a new topic my young apprentice More noise presentations have we must

68
Thank you for your Time. Contact Info: (phone) (cell)

Similar presentations

Presentation is loading. Please wait....

OK

Time and Labor Processing Day 1

Time and Labor Processing Day 1

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google