Download presentation

Presentation is loading. Please wait.

Published byCarter Shepherd Modified over 3 years ago

1
IB Revision: Radians, Arcs, Sectors Relationship between radians and degrees: 0/360 ° 90 ° 180 ° 270 ° 0/2π ½ π π 3/2 π e.g. 1)45 ° = 2)60° = 3)300° = 4)20°= 5)182°=

2
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit 10 cm θ

3
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm 10 cm θ

4
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm 5 m θ

5
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 5 m θ

6
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 θ 1 km

7
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 θ 1 km

8
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 3 ft θ

9
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 SectorLengthft 2 3 ft θ

10
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 SectorLengthft 2 5 mm θ

11
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 SectorLengthft SegmentAreamm 2 5 mm θ

12
IB Revision: Radians, Arcs, Sectors Find the length of the minor arc Find the area of the sector

13
IB Revision: Radians, Arcs, Sectors

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google