Download presentation

1
**Section 5.3 - Volumes by Slicing**

7.3 Solids of Revolution

2
**Find the volume of the solid generated by revolving the regions**

bounded by about the x-axis.

3
**Find the volume of the solid generated by revolving the regions**

bounded by about the x-axis.

4
**Find the volume of the solid generated by revolving the regions**

bounded by about the y-axis.

5
**Find the volume of the solid generated by revolving the regions**

bounded by about the x-axis.

6
**Find the volume of the solid generated by revolving the regions**

bounded by about the line y = -1.

7
**Let R be the first quadrant region enclosed by the graph of**

a) Find the area of R in terms of k. Find the volume of the solid generated when R is rotated about the x-axis in terms of k. c) What is the volume in part (b) as k approaches infinity? HINT:

8
**Let R be the first quadrant region enclosed by the graph of**

a) Find the area of R in terms of k.

9
**Let R be the first quadrant region enclosed by the graph of**

Find the volume of the solid generated when R is rotated about the x-axis in terms of k.

10
**Let R be the first quadrant region enclosed by the graph of**

c) What is the volume in part (b) as k approaches infinity?

11
**Let R be the region in the first quadrant under the graph of**

a) Find the area of R. The line x = k divides the region R into two regions. If the part of region R to the left of the line is 5/12 of the area of the whole region R, what is the value of k? Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares.

12
**Let R be the region in the first quadrant under the graph of**

a) Find the area of R.

13
**Let R be the region in the first quadrant under the graph of**

The line x = k divides the region R into two regions. If the part of region R to the left of the line is 5/12 of the area of the whole region R, what is the value of k? A

14
**Let R be the region in the first quadrant under the graph of**

Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares. Cross Sections

15
**The base of a solid is the circle . Each section of the**

solid cut by a plane perpendicular to the x-axis is a square with one edge in the base of the solid. Find the volume of the solid in terms of a.

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google