Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electron Distribution in Molecules Electron distribution is depicted with Lewis (electron dot) structuresElectron distribution is depicted with Lewis (electron.

Similar presentations


Presentation on theme: "Electron Distribution in Molecules Electron distribution is depicted with Lewis (electron dot) structuresElectron distribution is depicted with Lewis (electron."— Presentation transcript:

1 Electron Distribution in Molecules Electron distribution is depicted with Lewis (electron dot) structuresElectron distribution is depicted with Lewis (electron dot) structures This is how you decide how many atoms will bond covalently! (In ionic bonds, it was decided with charges)This is how you decide how many atoms will bond covalently! (In ionic bonds, it was decided with charges) G. N. Lewis

2 Bond and Lone Pairs Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS.Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS. HCl lone pair (LP) shared or bond pair This is called a LEWIS structure.

3 Bond Formation A bond can result from an overlap of atomic orbitals on neighboring atoms. Cl HH + Overlap of H (1s) and Cl (2p) Note that each atom has a single, unpaired electron.

4 Review of Valence Electrons Remember from the electron chapter that valence electrons are the electrons in the OUTERMOST energy level… that’s why we did all those electron configurations!Remember from the electron chapter that valence electrons are the electrons in the OUTERMOST energy level… that’s why we did all those electron configurations! B is 1s 2 2s 2 2p 1 ; so the outer energy level is 2, and there are 2+1 = 3 electrons in level 2. These are the valence electrons!B is 1s 2 2s 2 2p 1 ; so the outer energy level is 2, and there are 2+1 = 3 electrons in level 2. These are the valence electrons! Br is [Ar] 4s 2 3d 10 4p 5 How many valence electrons are present?Br is [Ar] 4s 2 3d 10 4p 5 How many valence electrons are present?

5 Review of Valence Electrons Number of valence electrons of a main (A) group atom = Group number

6 Steps for Building a Dot Structure Ammonia, NH 3 1. Decide on the central atom; never H. Why? If there is a choice, the central atom is atom of lowest affinity for electrons. (Most of the time, this is the least electronegative atom…in advanced chemistry we use a thing called formal charge to determine the central atom. But that’s another story!) Therefore, N is central on this one If there is a choice, the central atom is atom of lowest affinity for electrons. (Most of the time, this is the least electronegative atom…in advanced chemistry we use a thing called formal charge to determine the central atom. But that’s another story!) Therefore, N is central on this one 2. Add up the number of valence electrons that can be used. H = 1 and N = 5 H = 1 and N = 5 Total = (3 x 1) + 5 Total = (3 x 1) + 5 = 8 electrons / 4 pairs = 8 electrons / 4 pairs

7 3.Form a single bond between the central atom and each surrounding atom (each bond takes 2 electrons!) H H H N Building a Dot Structure H H H N 4.Remaining electrons form LONE PAIRS to complete the octet as needed (or duet in the case of H). 3 BOND PAIRS and 1 LONE PAIR. Note that N has a share in 4 pairs (8 electrons), while H shares 1 pair.

8 5.Check to make sure there are 8 electrons around each atom except H. H should only have 2 electrons. This includes SHARED pairs. Building a Dot Structure 6. Also, check the number of electrons in your drawing with the number of electrons from step 2. If you have more electrons in the drawing than in step 2, you must make double or triple bonds. If you have less electrons in the drawing than in step 2, you made a mistake! H H H N

9 Carbon Dioxide, CO 2 1. Central atom = 2. Valence electrons = 3. Form bonds. 4. Place lone pairs on outer atoms. This leaves 12 electrons (6 pair). 5. Check to see that all atoms have 8 electrons around it except for H, which can have 2. C 4 e- O 6 e- X 2 O’s = 12 e- Total: 16 valence electrons

10 Carbon Dioxide, CO 2 6. There are too many electrons in our drawing. We must form DOUBLE BONDS between C and O. Instead of sharing only 1 pair, a double bond shares 2 pairs. So one pair is taken away from each atom and replaced with another bond. C 4 e- O 6 e- X 2 O’s = 12 e- Total: 16 valence electrons How many are in the drawing?


Download ppt "Electron Distribution in Molecules Electron distribution is depicted with Lewis (electron dot) structuresElectron distribution is depicted with Lewis (electron."

Similar presentations


Ads by Google