Download presentation

Presentation is loading. Please wait.

Published byDonald Hitchcock Modified over 2 years ago

1
**A POLYNOMIAL is a monomial or a sum of monomials.**

POLYNOMIAL FUNCTIONS A POLYNOMIAL is a monomial or a sum of monomials. A POLYNOMIAL IN ONE VARIABLE is a polynomial that contains only one variable. Example: 5x2 + 3x - 7

2
**What is the degree and leading coefficient of 3x5 – 3x + 2 ?**

POLYNOMIAL FUNCTIONS The DEGREE of a polynomial in one variable is the greatest exponent of its variable. A LEADING COEFFICIENT is the coefficient of the term with the highest degree. What is the degree and leading coefficient of 3x5 – 3x + 2 ?

3
POLYNOMIAL FUNCTIONS A polynomial equation used to represent a function is called a POLYNOMIAL FUNCTION. Polynomial functions with a degree of 1 are called LINEAR POLYNOMIAL FUNCTIONS Polynomial functions with a degree of 2 are called QUADRATIC POLYNOMIAL FUNCTIONS Polynomial functions with a degree of 3 are called CUBIC POLYNOMIAL FUNCTIONS

4
**EVALUATING A POLYNOMIAL FUNCTION**

POLYNOMIAL FUNCTIONS EVALUATING A POLYNOMIAL FUNCTION Find f(-2) if f(x) = 3x2 – 2x – 6 f(-2) = 3(-2)2 – 2(-2) – 6 f(-2) = – 6 f(-2) = 10

5
**EVALUATING A POLYNOMIAL FUNCTION**

POLYNOMIAL FUNCTIONS EVALUATING A POLYNOMIAL FUNCTION Find f(2a) if f(x) = 3x2 – 2x – 6 f(2a) = 3(2a)2 – 2(2a) – 6 f(2a) = 12a2 – 4a – 6

6
**EVALUATING A POLYNOMIAL FUNCTION Find f(m + 2) if f(x) = 3x2 – 2x – 6**

POLYNOMIAL FUNCTIONS EVALUATING A POLYNOMIAL FUNCTION Find f(m + 2) if f(x) = 3x2 – 2x – 6 f(m + 2) = 3(m + 2)2 – 2(m + 2) – 6 f(m + 2) = 3(m2 + 4m + 4) – 2(m + 2) – 6 f(m + 2) = 3m2 + 12m + 12 – 2m – 4 – 6 f(m + 2) = 3m2 + 10m + 2

7
**EVALUATING A POLYNOMIAL FUNCTION Find 2g(-2a) if g(x) = 3x2 – 2x – 6**

POLYNOMIAL FUNCTIONS EVALUATING A POLYNOMIAL FUNCTION Find 2g(-2a) if g(x) = 3x2 – 2x – 6 2g(-2a) = 2[3(-2a)2 – 2(-2a) – 6] 2g(-2a) = 2[12a2 + 4a – 6] 2g(-2a) = 24a2 + 8a – 12

8
**POLYNOMIAL FUNCTIONS f(x) = 3 Constant Function Degree = 0**

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS f(x) = 3 Constant Function Degree = 0 Max. Zeros: 0

9
**POLYNOMIAL FUNCTIONS f(x) = x + 2 Linear Function Degree = 1**

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS f(x) = x + 2 Linear Function Degree = 1 Max. Zeros: 1

10
**POLYNOMIAL FUNCTIONS f(x) = x2 + 3x + 2 Quadratic Function Degree = 2**

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS f(x) = x2 + 3x + 2 Quadratic Function Degree = 2 Max. Zeros: 2

11
**POLYNOMIAL FUNCTIONS f(x) = x3 + 4x2 + 2 Cubic Function Degree = 3**

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS f(x) = x3 + 4x2 + 2 Cubic Function Degree = 3 Max. Zeros: 3

12
**POLYNOMIAL FUNCTIONS f(x) = x4 + 4x3 – 2x – 1 Quartic Function**

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS f(x) = x4 + 4x3 – 2x – 1 Quartic Function Degree = 4 Max. Zeros: 4

13
**POLYNOMIAL FUNCTIONS f(x) = x5 + 4x4 – 2x3 – 4x2 + x – 1 Quintic**

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS f(x) = x5 + 4x4 – 2x3 – 4x2 + x – 1 Quintic Function Degree = 5 Max. Zeros: 5

14
**POLYNOMIAL FUNCTIONS f(x) = x2 Degree: Even Leading Coefficient: +**

END BEHAVIOR f(x) = x2 Degree: Even Leading Coefficient: + End Behavior: As x -∞; f(x) +∞ As x +∞; f(x) +∞

15
**POLYNOMIAL FUNCTIONS f(x) = -x2 Degree: Even Leading Coefficient: –**

END BEHAVIOR f(x) = -x2 Degree: Even Leading Coefficient: – End Behavior: As x -∞; f(x) -∞ As x +∞; f(x) -∞

16
**POLYNOMIAL FUNCTIONS f(x) = x3 Degree: Odd Leading Coefficient: +**

END BEHAVIOR f(x) = x3 Degree: Odd Leading Coefficient: + End Behavior: As x -∞; f(x) -∞ As x +∞; f(x) +∞

17
**POLYNOMIAL FUNCTIONS f(x) = -x3 Degree: Odd Leading Coefficient: –**

END BEHAVIOR f(x) = -x3 Degree: Odd Leading Coefficient: – End Behavior: As x -∞; f(x) +∞ As x +∞; f(x) -∞

18
**REMAINDER AND FACTOR THEOREMS**

f(x) = 2x2 – 3x + 4 Divide the polynomial by x – 2 Find f(2) 2 f(2) = 2(2)2 – 3(2) + 4 4 2 f(2) = 8 – 6 + 4 2 1 6 f(2) = 6

19
**REMAINDER AND FACTOR THEOREMS**

When synthetic division is used to evaluate a function, it is called SYNTHETIC SUBSTITUTION. Try this one: Remember – Some terms are missing f(x) = 3x5 – 4x3 + 5x - 3 Find f(-3)

20
**REMAINDER AND FACTOR THEOREMS**

The binomial x – a is a factor of the polynomial f(x) if and only if f(a) = 0.

21
**REMAINDER AND FACTOR THEOREMS**

Is x – 2 a factor of x3 – 3x2 – 4x + 12 2 Yes, it is a factor, since f(2) = 0. 2 -2 -12 1 -1 -6 Can you find the two remaining factors?

22
**REMAINDER AND FACTOR THEOREMS Find the two unknown ( ? ) quantities.**

(x + 3)( ? )( ? ) = x3 – x2 – 17x - 15 Find the two unknown ( ? ) quantities.

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google