Download presentation

Presentation is loading. Please wait.

Published byKameron Hinch Modified over 2 years ago

1
Global Constraints Toby Walsh National ICT Australia and University of New South Wales www.cse.unsw.edu.au/~tw

2
Course outline ● Introduction ● All Different ● Lex ordering ● Value precedence ● Complexity ● GAC-Schema ● Soft Global Constraints ● Global Grammar Constraints ● Roots Constraint ● Range Constraint ● Slide Constraint ● Global Constraints on Sets

3
Constraint programming ● “Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it”. – Gene Freuder, Constraints, April 1997

4
My Da Vinci code Sol= [ S,E,N,D, M,O,R,E, M,O,N.E.Y], Sol :: [0..9], S<>0, M<>0. alldifferent(Sol), 1000*S+100*E+10*N+D+ 1000*M+100*O+10*R+E= 10000*M+1000*O+100*N+10*E+Y, label(Sol).

5
My Da Vinci code Sol= [ S,E,N,D, M,O,R,E, M,O,N.E.Y], Sol :: [0..9], S<>0, M<>0. alldifferent(Sol), 1000*S+100*E+10*N+D+ 1000*M+100*O+10*R+E= 10000*M+1000*O+100*N+10*E+Y, label(Sol). ? Sol = [9,5,8,7,1,0,8,2]

6
Suduko Puzzle = [X11,X12,X13, …X19, X21,X22, ………X29,.. X91,X92, ……….X99] Puzzle :: 1..9 alldifferent([X11,..X19]) alldifferent([X21,..X29]).. alldifferent([X11,..X91]).. alldifferent([X11,..X33])..

7
Application areas ● Scheduling ● Timetabling ● Assignment – personnel – stand allocation ● Network configuration ● Configuration ● Bioinformatics ●...

8
Constraint satisfaction ● Decision variables: – X1, X2, X3... ● Domain of values: – red, yellow, green,... ● Constraints – binary relations like X1=/= X2 – non-binary relations like NValues([X1,..Xn],3)

9
Constraint optimization ● Many problems are in fact optimization – Maximize profit – Minimize costs –... ● Optimization = sequence of decision problems – Feasibility constraints – Optimization constraint: Sum(i,ai.Xi) <= Cost ● Branch and bound

10
Solving constraint satisfaction problems ● Systematic methods – Extend partial solutions – Search (branching) and – Inference (enforcing a local consistency) ● Local search methods – Complete solution – Repair based

11
Solving constraint satisfaction problems ● Systematic methods – Pick a variable and a value to assign it ● Branching heuristic – Enforce a local consistency property ● This prunes values of future uninstantiated variables – If a domain is wiped out, backtrack – Else repeat

12
Tree search

13
Branching heuristics ● Variable ordering – most constrained variable, fail first – e.g. smallest domain, domain/degree ● Value ordering – most promising value – succeed first

14
Arc consistency ● X=a has support iff it occurs in an assignment that satisfies the constraint ● A constraint is arc consistent iff each value in the domain of each variable has support ● Enforce arc consistency by deleting values without support – Exists maximal arc consistent domains ● For non-binary constraints, arc consistency called generalized arc consistency (GAC) or hyper arc consistency

15
Enforcing arc consistency ● X1, X2 in {red,blue} ● X3 in {red,blue,green} ● X1=/=X2, X1=/=X3, X2=/=X3 ● All three binary inequalities are arc consistent – e.g X3=red has support X1=blue in X1=/=X3

16
Enforcing arc consistency ● X1, X2 in {red,blue} ● X3 in {red,blue,green} ● AllDifferent(X1,X2,X3) ● Now enforcing GAC on AllDifferent constraint prunes – X3=red and X3=blue – These values have no support! – X3=green has two supports: – X1=red, X2=blue and X1=blue, X2=red

17
Bound consistency ● Max and min values have supports which lie between max and min values in each domain ● Also used with set variables – Set variable typically represented by – Upper bound = elements that can be in set – Lower bound = elements that must be in set – Equivalently 0/1 vector representing characteristic function ● Bound consistency on characteristic function rep – Upper bound = Union of possible supported values – Lower bound = Intersection of possible supported values

18
Global constraints Richer modelling Richer solving....

19
Comparison with Operations Research ● CP – rich modelling language – many different global constraints – variable indexing – fast local inference on these global constraints – good for finding feasible and tightly constrained solutions ● (I)LP – everything has to be a linear inequality – limited range of solution methods (simplex,...) – good at proving optimality

20
Variable indexing ● OR people jealously look at our ability to index with a variable – Array like “look up” – E.g. sports scheduling ● forall(i in Teams, k i Weeks) Plays[Plays[i,k]]=i – Not possible in ILP – Simple global “element” constraint ● element(X,[a_1,..,a_m],Y) iff a_X = Y

21
Global constraints ● Any non-binary constraint – AllDifferent – Nvalues – Element – Lex ordering – Stretch constraint – Sequencing constraint – Cummulative constraint –... – Beldiceanu's large catalog ● Each comes with an efficient propagator...

22
To be or not to be a global constraint? ● [Bessiere and Van Hentenryck CP 03] ● Semantically global – no constraint decomposition ● Operationally global – no constraint decomposition on which we do the same pruning (e.g. GAC on All Different) ● Algorithmically global – complexity disadvantage to use decomposition (e.g. FC on All Different)

23
Why global constraints? ● Richer modelling – simple models (e.g. variable indexing) – easy to prototype and maintain ● Richer solving – propagators provide “global” view otherwise missing in CP – can making solving competitive with OR methods

24
Conclusions ● Constraint programming is a powerful paradigm for solving many combinatorial optimization problems ● Global constraints are integral to this success ● As we shall see, there are many different types of global constraints – However, a few are central like AllDifferent, Roots, Range, Slide,...

Similar presentations

OK

Chapter 8: The Solver and Mathematical Programming Spreadsheet-Based Decision Support Systems Prof. Name Position (123) 456-7890 University.

Chapter 8: The Solver and Mathematical Programming Spreadsheet-Based Decision Support Systems Prof. Name Position (123) 456-7890 University.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on series and parallel circuits quiz Download ppt on 1g 2g 3g 4g technology Ppt on fibonacci numbers definition Ppt on cryogenic engine Ppt on importance of water in our life Ppt on you can win the race Ppt on electronic configuration of elements Ppt on retail management information system Ppt on sound physics class 9 Ppt on production planning