Download presentation

Presentation is loading. Please wait.

1
**Solving Linear Systems by Graphing**

2
**System of 2 linear equations (in 2 variables x & y)**

2 equations with 2 variables (x & y) each. Ax + By = C Dx + Ey = F Solution of a System – an ordered pair (x,y) that makes both eqns true.

3
**Ex: Check whether the ordered pairs are solns. of the system**

Ex: Check whether the ordered pairs are solns. of the system. x-3y= -5 -2x+3y=10 (-5,0) -5-3(0)= -5 -5 = -5 -2(-5)+3(0)=10 10=10 Solution (1,4) 1-3(4)= -5 1-12= -5 -11 = -5 *doesn’t work in the 1st eqn, no need to check the 2nd. Not a solution.

4
**Solving a System Graphically**

Graph each equation on the same coordinate plane. (USE GRAPH PAPER!!!) If the lines intersect: The point (ordered pair) where the lines intersect is the solution. If the lines do not intersect: They are the same line – infinitely many solutions (they have every point in common). They are parallel lines – no solution (they share no common points).

5
**Ex: Solve the system graphically. 2x-2y= -8 2x+2y=4**

(-1,3)

6
**Ex: Solve the system graphically. 2x+4y=12 x+2y=6**

1st eqn: x-int (6,0) y-int (0,3) 2ND eqn: What does this mean? the 2 eqns are for the same line! ¸ many solutions

7
**Ex: Solve graphically: x-y=5 2x-2y=9**

1st eqn: x-int (5,0) y-int (0,-5) 2nd eqn: x-int (9/2,0) y-int (0,-9/2) What do you notice about the lines? They are parallel! Go ahead, check the slopes! No solution!

Similar presentations

© 2023 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google