# Interpretovaná Matematika integrály. Integrály - motivace 12 8 4 0 0 5 10 15.

## Presentation on theme: "Interpretovaná Matematika integrály. Integrály - motivace 12 8 4 0 0 5 10 15."— Presentation transcript:

Interpretovaná Matematika integrály

Integrály - motivace 12 8 4 0 0 5 10 15

Integrály - motivace 12 8 4 0 0 5 10 15

Integrály - motivace 12 8 4 0 0 5 10 15

Integrály - motivace 12 8 4 0 0 5 10 15...........................................................................

Integrály - motivace 12 8 4 0 0 5 10 15...........................................................................

Integrály - motivace 12 8 4 0 0 5 10 15

Integrály - motivace 12 8 4 0 0 5 10 15

Integrály - motivace 12 8 4 0 0 5 10 15

Suma vs Integrál 60 40 20 0 0 5 10 15...........................................

Suma vs Integrál 60 40 20 0 0 5 10 15....................................................................

Suma vs Integrál 60 40 20 0 0 5 10 15...........................................................................

Suma vs Integrál 60 40 20 0 0 5 10 15 12 8 4 0 0 5 10 15

Integrály Integrace je proces inverzní k derivování. Sumace je proces inverzní k odečítání.

Integrály

Integrály (a ted vazne)

Integrály

Integrály (a ted vazne)

Určitý integrál x y 3

x y 3 25

x y 3 25

x y 3 25

x y 3 25

x y 3 25

x y 3 9 25

Neurčitý Integrál, primitivní fce Určitý Integrál, Integrál definite integrál indefinite integrál

The term integral may also refer to the notion of antiderivative, a function F whose derivative is the given function ƒ. In this case it is called an indefinite integral, while the integrals discussed in this article are termed definite integrals. Some authors maintain a distinction between antiderivatives and indefinite integrals. antiderivativederivative

Distribuce

Frekvenční Distribuce veličin

species abundance frequency distribution 0 Abundance frequency of abundances

notes on distribution - processes beyond Normal (Gauss) distribution:

notes on distribution - processes beyond Binomic distribution: 0 n1n2 n Probability (n1=n) 15 1 2 3

Co byste si tak mohli pamatovat

Download ppt "Interpretovaná Matematika integrály. Integrály - motivace 12 8 4 0 0 5 10 15."

Similar presentations