Presentation is loading. Please wait.

Presentation is loading. Please wait.

Interpretovaná Matematika integrály. Integrály - motivace 12 8 4 0 0 5 10 15.

Similar presentations


Presentation on theme: "Interpretovaná Matematika integrály. Integrály - motivace 12 8 4 0 0 5 10 15."— Presentation transcript:

1 Interpretovaná Matematika integrály

2 Integrály - motivace

3 Integrály - motivace

4 Integrály - motivace

5 Integrály - motivace

6 Integrály - motivace

7 Integrály - motivace

8 Integrály - motivace

9 Integrály - motivace

10 Suma vs Integrál

11 Suma vs Integrál

12 Suma vs Integrál

13 Suma vs Integrál

14 Integrály Integrace je proces inverzní k derivování. Sumace je proces inverzní k odečítání.

15 Integrály

16

17

18 Integrály (a ted vazne)

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 Integrály

34

35

36 Integrály (a ted vazne)

37

38 Určitý integrál x y 3

39 x y 3 25

40 x y 3 25

41 x y 3 25

42 x y 3 25

43 x y 3 25

44 x y

45

46

47

48

49

50

51

52

53 Neurčitý Integrál, primitivní fce Určitý Integrál, Integrál definite integrál indefinite integrál

54 The term integral may also refer to the notion of antiderivative, a function F whose derivative is the given function ƒ. In this case it is called an indefinite integral, while the integrals discussed in this article are termed definite integrals. Some authors maintain a distinction between antiderivatives and indefinite integrals. antiderivativederivative

55 Distribuce

56 Frekvenční Distribuce veličin

57 species abundance frequency distribution 0 Abundance frequency of abundances

58 notes on distribution - processes beyond Normal (Gauss) distribution:

59 notes on distribution - processes beyond Binomic distribution: 0 n1n2 n Probability (n1=n)

60 Co byste si tak mohli pamatovat

61


Download ppt "Interpretovaná Matematika integrály. Integrály - motivace 12 8 4 0 0 5 10 15."

Similar presentations


Ads by Google