Presentation is loading. Please wait.

Presentation is loading. Please wait.

High  Li/B  -Beam Enrique Fernández-Martínez, MPI für Physik Munich Based on a collaboration with: P. Coloma, A. Donini and J. López-Pavón.

Similar presentations


Presentation on theme: "High  Li/B  -Beam Enrique Fernández-Martínez, MPI für Physik Munich Based on a collaboration with: P. Coloma, A. Donini and J. López-Pavón."— Presentation transcript:

1 High  Li/B  -Beam Enrique Fernández-Martínez, MPI für Physik Munich Based on a collaboration with: P. Coloma, A. Donini and J. López-Pavón

2 The oscillation parameters What we already know Solar sector Atm sector What we still don’t know  13 < 12.9º  cp Mass hierarchy Octant of  23  M.C. González-García and M. Maltoni arXiv: 

3  Beam P. Zucchelli hep-ph/  100

4  Beam + J. Burguet-Castell et al. hep-ph/ J. Burguet-Castell et al. hep-ph/  350

5  Beam  100 Li/B Ionization Cooling C. Rubbia et al. hep-ph/ A.Donini and E. F-M hep-ph/ C. Rubbia hep-ph/

6  Beam +  350 Li/B Ionization Cooling C. Rubbia et al. hep-ph/ S. K. Agarwalla et al. hep-ph/ S. K. Agarwalla et al. hep-ph/ S. K. Agarwalla et al. arXiv:

7 The Golden channel in matter A. Cervera et al. hep-ph/   Expanded in sin2 2 cos ~   J sin 2  13 <         L sol E m   E m atm   where Magic Baseline 7000Km Resonant enhancement when with E  6GeV

8 The baselines    5º  0, 90, -90º 7000km Inverted Hierarchy 7000km Normal Hierarchy Resonant enhancement depending on the hierarchy

9 Sensitivity to the mass hierarchy S. K. Agarwalla et al. arXiv: Sensitivity to the mass hierarchy down to sin 2 2  13 = for 

10 The baselines 2000km Normal Hierarchy    5º  0, 90, -90º 7000km Inverted Hierarchy 7000km Normal Hierarchy 2000km Inverted Hierarchy

11  Beam +  350 Li/B Ionization Cooling C.Rubbia et al. hep-ph/

12 B And Li  Beam fluxes We consider 3 different fluxes “Nominal” 2·10 18 decays/year “Medium” 5·10 18 decays/year “Ultimate” 10·10 18 decays/year “Ultimate” flux at 2000km

13 The Detector 50kt Magnetized Iron Neutrino Detector: MIND We consider 9 bins of 1 GeV between GeV 65% signal efficiency or backgrounds 2.5% and 5% or 10% and 20% systematics in signal and background Atmospheric background negligible a this energies with bunching ISS Detector Working Group arXiv: signal eff  0.7 CC charm  CC no-charm  NC 

14 Degeneracies at 2000km true solution sign degeneracy Nominal, Medium and Ultimate fluxes Loss of sensitivity to CP violation and the mass hierarchy at the 2000km baseline due to the sign degeneracy CP discovery potential

15 Combining the two baselines Nominal, Medium and Ultimate fluxes The sign degeneracy is solved at the 7000km baseline 2000km2000km km

16 CP discovery potential Nominal, Medium and Ultimate fluxes The CP discovery potential with the Ultimate and Medium flux between low and high  -Beam 2000km km ISS Physics Working Group arXiv:

17  13 discovery potential Nominal, Medium and Ultimate fluxes 2000km km The Ultimate flux similar to high  -Beam The Medium flux between low and high  -Beam The Nominal flux similar to Super-Beams ISS Physics Working Group arXiv:

18 Sensitivity to the mass hierarchy Nominal, Medium and Ultimate fluxes 2000km km All the fluxes worse than the optimum NF but better than the other facilities ISS Physics Working Group arXiv:

19 Systematics and Backgrounds 2.5/5% and 10/20% systematic error considered Impact of the background and the systematic errors very small Performance limited by statistics No improvement if background is lowered below Effect of SystematycsEffect of Background and background considered

20 Conclusions Strong complementarity between the two baselines 2000km detector very sensitive to  but spoiled by sign degeneracies 7000km detector resonant dependence on the mass hierarchy and no dependence on  solves degeneracies With Medium flux sensitivity to  13  and the mass hierarchy down to sin 2 2  13  3·10 -4 Impact of the background and the systematic errors very small. Performance limited by statistics

21 The ionization cooling procedure  Li + D →   Li + p  Li +  He →   B + n C.Rubbia et al. hep-ph/ An excess of ions/s could be accumulated

22 Event Rates  Sign(  m 2 23 ) 2000km 7000km  7000km For 10yr exposure of each beam to a 50kt iron detector sin     = 0.01


Download ppt "High  Li/B  -Beam Enrique Fernández-Martínez, MPI für Physik Munich Based on a collaboration with: P. Coloma, A. Donini and J. López-Pavón."

Similar presentations


Ads by Google