# Today in Precalculus Go over homework

## Presentation on theme: "Today in Precalculus Go over homework"— Presentation transcript:

Today in Precalculus Go over homework
Notes: Simulating Projectile Motion Homework

Simulating Projectile Motion
Suppose that a baseball is thrown from a point y0 feet above ground level with an initial speed of v0 ft/sec at an angle θ with the horizon.

Simulating Projectile Motion
The path of the object is modeled by the parametric equations: x=(v0cosθ)t y= -16t2 + (v0sinθ)t +y0 Note: The x-component is simply d=rt where r is the horizontal component of v0. The y-component is the velocity equation using the y-component of v0.

Example Clark hits a baseball at 3ft above the ground with an initial speed of 150ft/sec at an angle of 18° with the horizontal. Will the ball clear a 20ft fence that is 400ft away? The path of the ball is modeled by the parametric equations: x = (150cos18°)t y = -16t2 +(150sin18°)t + 3 The fence can be graphed using the parametric equations: x = 400 y = 20

Example t: 0,3 x: 0,450 y: 0, 80 Approximately how many seconds after the ball is hit does it hit the wall? 400= (150cos18°)t t = sec How high up the wall does the ball hit? y=-16(2.804)2 + (150sin18°)(2.804)+3 = 7.178ft

Example What happens if the angle is 19°?
The ball still doesn’t clear the fence.

Example What happens if the angle is 20°?
The ball still doesn’t clear the fence.

Example What happens if the angle is 21°?
The ball just clears the fence.

Example What happens if the angle is 22°?
The ball goes way over the fence.

Practice x = (85cos23°)t y = -16t2 +(85sin23°)t
The fence can be graphed using the parametric equations: x = 135 y = 10

t: 0,3 x: 0,140 y: 0, 30 How long does it take until the ball passes the cross bar? 135= (85cos23°)t t = sec How high is the ball when it passes the cross bar? y=-16(1.725)2 + (65sin23°)(1.725) = 9.681ft

Homework worksheet