Download presentation

Presentation is loading. Please wait.

Published byJudith Clayborn Modified over 2 years ago

1
Lecture 7 ENGR-1100 Introduction to Engineering Analysis

2
Lecture Outline Equilibrium of a particle - three dimensional problems.

3
Equilibrium of a particle – three dimensions R= R x + R y + R z = = R x i + R y j + R z k = F x i + F y j + F k k The equation can only be satisfied if: R x = R x i= F x i=0 R y = R y j= F y j=0 R z = R z j= F z j=0

4
Example – P3-22 Struts AB and AC of Fig. P3-22 can transmit only axial tensile compressive forces. Determine the forces in struts AB and AC and the tension in cable AD when force F=1250 N.

5
Solution 1) Free body diagram – body #1 T AD = (-6/( ) 1/2 j + 3/( ) 1/2 k) T AD =(-0.89j k ) T AD T AD F AB F AC F z y x F AC = (-3/( ) 1/2 i -6/( ) 1/2 j -2/( ) 1/2 k )F AC = (-0.43i j k ) F AC F AB = (2/( ) 1/2 i -6/( ) 1/2 j -2/( ) 1/2 k ) F AB =( 0.3i - 0.9j - 0.3k) ) F AB F = (-1250 k) N

6
F x = F AC +0.3F AB =0 F y = T AD -0.86F AC -0.9F AB =0 F z = T AD -0.29F AC -0.3F AB =1250 lb T AD F AB F AC F z y x

7
A= Using Maple: T AD = N; F AC = N; F AB = N;

8
Class Assignment: Exercise set 3-21 please submit to TA at the end of the lecture The block shown in fig. P3-21 weighs 500 lb. Determine the tensions in cable AB, AC, and AD. Solution: T AB =267.4 lb; T AC =142.5 lb; T AD =164 lb;

9
T AB = (6/( ) 1/2 j + 12/( ) 1/2 k) T AB =(0.447j k ) T AB T AC = (4/( ) 1/2 i -3/( ) 1/2 j -12/( ) 1/2 k )T AC = (0.31i – 0.23j k ) T AC T AB T AC T AD z y x W=500 lb T AD = (-4/( ) 1/2 i-8/( ) 1/2 j+12/( ) 1/2 k) T AC = (-0.27i j + 0.8k ) T AC Solution

10
T AB = (0.447j k ) T AB T AC = (0.31i – 0.23j k ) T AC T AD = (-0.27i j + 0.8k ) T AD W = (-500 k) lb F x =0: 0T AB +0.31T AC -0.27T AD =0 F y =0: 0.447T AB -0.23T AC -0.53T AD =0 F z =0: 0.89T AB +0.92T AC +0.8T AD =500

11
A= Using Maple: T AB =267.4 lb; T AC =142.5 lb; T AD =164 lb;

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google