# Electricity W Richards Worthing High School.

## Presentation on theme: "Electricity W Richards Worthing High School."— Presentation transcript:

Electricity W Richards Worthing High School

(Words: volts, amps, ohms, voltage, ammeter, voltmeter)
Basic ideas… Electric current is when electrons start to flow around a circuit. We use an _________ to measure it and it is measured in ____. Potential difference (also called _______) is how big the push on the electrons is. We use a ________ to measure it and it is measured in ______. Resistance is anything that resists an electric current. It is measured in _____.” (Words: volts, amps, ohms, voltage, ammeter, voltmeter)

More basic ideas… If a battery is added the current will ________ because there is a greater _____ on the electrons If a bulb is added the current will _______ because there is greater ________ in the circuit

Current in a series circuit
If the current here is 2 amps… The current here will be… The current here will be… And the current here will be… In other words, the current in a series circuit is THE SAME at any point

Current in a parallel circuit
A PARALLEL circuit is one where the current has a “choice of routes” Here comes the current… Half of the current will go down here (assuming the bulbs are the same)… And the rest will go down here…

Current in a parallel circuit
If the current here is 6 amps And the current here will be… The current here will be… The current here will be… The current here will be…

Voltage in a series circuit
If the voltage across the battery is 6V… V …and these bulbs are all identical… V V …what will the voltage across each bulb be? 2V

Voltage in a series circuit
If the voltage across the battery is 6V… V V …what will the voltage across two bulbs be? 4V

Voltage in a parallel circuit
If the voltage across the batteries is 4V… What is the voltage here? V 4V And here? V 4V

Summary Current is THE SAME at any point
In a SERIES circuit: Current is THE SAME at any point Voltage SPLITS UP over each component In a PARALLEL circuit: Current SPLITS UP down each “strand” Voltage is THE SAME across each”strand”

An example question: 6V A3 3A A1 V1 A2 V2 V3

There are two main reasons why parallel circuits are used more commonly than series circuits: Extra appliances (like bulbs) can be added without affecting the output of the others If one appliance breaks it won’t affect the others either

Resistance V R I Resistance = Voltage (in V) (in ) Current (in A)
Georg Simon Ohm Resistance is anything that will RESIST a current. It is measured in Ohms, a unit named after me. The resistance of a component can be calculated using Ohm’s Law: V R I Resistance = Voltage (in V) (in ) Current (in A)

An example question: Ammeter reads 2A A V
What is the resistance across this bulb? Assuming all the bulbs are the same what is the total resistance in this circuit? Voltmeter reads 10V

Current-voltage graphs
I V I V 2. Bulb I V 3. Diode 1. Resistor Explain the shape of each graph

Three simple components:
Diode – only lets current flow in one direction Light dependant resistor – resistance DECREASES when light intensity INCREASES Thermistor – resistance DECREASES when temperature INCREASES

Wiring a plug

DC and AC V DC stands for “Direct Current” – the current only flows in one direction: Time 1/50th s AC stands for “Alternating Current” – the current changes direction 50 times every second (frequency = 50Hz) 240V T V

Words – large, harm, safety, melt, live, circuit, fuse
Fuses Fuses are _______ devices. If there is a fault in an appliance which causes the ____ and neutral (or earth) wire to cross then a ______ current will flow through the _____ and cause it to _____. This will break the _______ and protect the appliance and user from further _____. Words – large, harm, safety, melt, live, circuit, fuse

Words – electromagnet, broken, attract, reset, quicker
Circuit breakers If the current becomes too high the __________ is activated. This will ______ the iron and the contact will be _______. This will break the circuit. Circuit breakers have two main advantages over fuses: they work ______ and can easily be ______. Words – electromagnet, broken, attract, reset, quicker

Words – fuse, fault, metal, surges, touch
Earth wires Earth wires are always used if an appliance has a _____ case. If there is a _____ in the appliance, causing the live wire to ______ the case, the current “_______” down the earth wire and the ______ blows. Words – fuse, fault, metal, surges, touch

Power and fuses Power is “the rate of doing work”. The amount of power being used in an electrical circuit is given by: P I V Power = voltage x current in W in V in A Using this equation we can work out the fuse rating for any appliance. For example, a 3kW (3000W) fire plugged into a 240V supply would need a current of _______ A, so a _______ amp fuse would be used (fuse values are usually 3, 5 or 13A).

Power and fuses Copy and complete the following table: Appliance
Power rating (W) Voltage (V) Current needed (A) Fuse needed (3, 5 or 13A) Toaster 720 240 Fire 2000 Hairdryer 300 Hoover 1000 Computer 100 Stereo 80

Charge (Q) As we said, electricity is when electrons move around a circuit and carry energy with them. Each electron has a negative CHARGE. Charge is measured in Coulombs (C). We can work out how much charge flows in a circuit using the equation: Q T I Charge = current x time (in C) (in A) (in s)

Example questions Charge (C) Current (A) Time (s) 5 2 0.4 1 20 0.5 50
250 3 60 A circuit is switched on for 30s with a current of 3A. How much charge flowed? During electrolysis 6A was passed through some copper chloride and a charge of 1200C flowed. How long was the experiment on for? A bed lamp is switched on for 10 minutes. It works on a current of 0.5A. How much charge flowed?

Energy transferred = charge x voltage
Energy and charge The amount of energy that flows in a circuit will depend on the amount of charge carried by the electrons and the voltage pushing the charge around: Energy transferred = charge x voltage (in J) (in C) (in V) E Q V

Example questions In a radio circuit a voltage of 6V is applied and a charge of 100C flows. How much energy has been transferred? In this circuit the radio drew a current of 0.5A. How long was it on for? A motor operates at 6V and draws a current of 3A. The motor is used for 5 minutes. Calculate: a) The motor’s resistance, b) the charge flowing through it, c) the energy supplied to it A lamp is attached to a 12V circuit and a charge of 1200C flows through it. If the lamp is on for 10 minutes calculate a) the current, b) the resistance, c) the energy supplied to the bulb.

Static electricity Static electricity is when charge “build up” on an object and doesn’t move, e.g. rubbing a rod:

Two different rods will attract each other if they have different charge:
Two rods made of the same material will repel each other due to having the same charge:

Van de Graff generators
A charge builds up on the dome due to electrons being “______ off” by the belt. If a big enough ______ is built up then the voltage becomes high enough to _____ the air molecules and the electrons “___” down to Earth – this is an electric _________. Words – charge, jump, current, rubbed, ionise

Use of static 1 - Photocopiers
Photocopiers use static electricity. They work by: 1) Copying an ______ of the page onto a ______ plate, 2) Light then causes the charge to ____ away, leaving an “electrostatic impression” of the page, 3) The charges left on the plate ______ small drops of black powder, 4) The powder is transferred from the plate onto the _____, 5) The paper is _____ to “fix” the powder. P Words – heated, leak, paper, image, charged, attract

Dangers of static During refuelling the fuel gains electrons from the pipe, making the pipe positive and the fuel negative. The resulting voltage may cause a spark – bad news! Solution: Either earth the fuel tank with a copper rod or connect the tanker to the plane by a copper conductor.

Electrolysis Electrolysis is used to extract a HIGHLY REACTIVE metal.
= chloride ion = copper ion When we electrolysed copper chloride the negative chloride ions moved to the positive electrode and the positive copper ions moved to the negative electrode – OPPOSITES ATTRACT!!!

Some example questions
A current of 2A flows through some copper chloride for 1 minute and 0.01g of copper is deposited at the negative electrode. a) How much would be deposited if the current was increased to 6A? b) How much would be deposited if the current was kept at 6A and the experiment was left for another minute? c) How much charge flowed in question (b) above? 2) A current of 0.05A flows through some copper chloride for 500 seconds and 0.05g of chlorine is released at the positive electrode. a) How much would be deposited if the current was increased to 0.1A? b) How much would be deposited if the current was kept at 0.1A and the experiment was left for 250 seconds instead?