Presentation is loading. Please wait.

Presentation is loading. Please wait.

Doc.: IEEE 802.22-06-0117-00-0000 Submission July 2006 Sunghyun Hwang, ETRISlide 1 [Fractional BW Usage for WRAN Systems] IEEE P802.22 Wireless RANs Date:

Similar presentations


Presentation on theme: "Doc.: IEEE 802.22-06-0117-00-0000 Submission July 2006 Sunghyun Hwang, ETRISlide 1 [Fractional BW Usage for WRAN Systems] IEEE P802.22 Wireless RANs Date:"— Presentation transcript:

1 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 1 [Fractional BW Usage for WRAN Systems] IEEE P Wireless RANs Date: Authors: Notice: This document has been prepared to assist IEEE It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chairhttp://standards.ieee.org/guides/bylaws/sb-bylaws.pdf Carl R. StevensonCarl R. Stevenson as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE Working Group. If you have questions, contact the IEEE Patent Committee Administrator at

2 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 2 This presentation describes the fractional bandwidth operations in IEEE WRAN systems. Here, we explain the concept and advantages of fractional bandwidth usage. We also provide several scenarios of possible application in WRAN systems. To realize the scheme we propose how we detect the fractional bandwidth mode. As a result, by using the fractional bandwidth operation, we will show how we protect the narrowband incumbent users more safely and quickly. Abstract

3 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 3 What’s the Fractional BW Usage? (1) This scheme is proposed to support the bandwidth scalability as included in FRD A quotation from FRD

4 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 4 What’s the Fractional BW Usage? (2) The fractional BW usage mode is to use fractionally vacant bandwidth of a single channel where there is no any incumbent signal That is, we do not consider the concurrent fractional use of single channel with a narrow band incumbent user except during the channel moving just after an incumbent signal was detected The number of used sub-carriers in the fractionally used channel is proportional to the fractional bandwidth

5 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 5 Why the Fractional BW Usage? We can decrease the interference to adjacent narrowband IUs (1 st Scenario) 4.8 uV/m at 3 m in 120 kHz bandwidth) –If the narrowband incumbent signal is located on the edge of channel, it is very tough to meet the requirement of WRAN emission limit at FRD (4.8 uV/m at 3 m in 120 kHz bandwidth) in the first adjacent channel –To meet the emission limit, we can not use the full subcarriers on the adjacent channel where WRAN is operating. –Therefore we can use only the fraction of the adjacent channel We can increase the throughput with the fractional use of channel, otherwise waste the channel (2 nd Scenario) We can decrease the interfering time with the narrow band IU during the channel switching by the quick evacuation of the subcarrier position of IU (3 rd Scenario)

6 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 6 The 1 st Scenario of Possible Application To decrease the interference with the adjacent narrowband IU (concept) –Refer to the in FRD –When the narrowband IU is appeared on the adjacent TV channel –By using the sufficient guard band (see slide 12-19), we can avoid the interference with the narrowband IUs near the band edge and assure more safe operation of them –It can be advantageous to narrowband incumbent users, such as wireless microphone

7 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 7 The 1 st Scenario of Possible Application Operational procedure to decrease the interference with the adjacent narrowband IUs 1)Detect the narrowband IU 2)Is it located on the adjacent channel? 3)If YES, how much guard band does it need? The guard band is calculated considering the position of the narrowband IU on the adjacent channel 4)If it is necessary to evacuate subcarriers near IU spectrum to obtain sufficient guard band, use the fractional bandwidth mode

8 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 8 The 2 nd Scenario of Possible Application To increase the throughput (concept) –We can increase the throughput by using the fractional BW additionally, –And we can make a larger pool of bandwidth available to each user –If we use more than 5 MHz fractional BW, we can satisfy the minimum peak throughput of FRD (1.5 Mbps for DL, 384 kbps for UL) –Like the whole BW usage mode, it is also applicable to normal PMP operation

9 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 9 The 2 nd Scenario of Possible Application Operational procedure to increase the throughput with a fraction of bandwidth 1)Now we are using two contiguous TV channels with bonding or aggregation 2)Detect the narrowband IU 3)Is it located on the adjacent channel? 4)If YES, how much guard band does it need? The guard band is calculated considering the position of the narrowband IU on the adjacent channel 5)Determine the available fractional bandwidth? 6)Use the available fractional bandwidth with adjacent whole single TV channel. In this case, it is possible to use both channel bonding and channel aggregation

10 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 10 The 3 rd Scenario of Possible Application To decrease the interference with the narrowband IU during the channel switching (concept) –On appearing the narrowband IU, we will evacuate quickly subcarriers same as the spectrum occupied by the IU  Fractional BW mode is activated –By using the fractional BW, we can transmit the explicit channel switching information without interference with the IU –Therefore, during the Channel Move Time(< 2 sec), we can significantly decrease the interference with IU –It can be advantageous to narrowband incumbent users, such as wireless microphone

11 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 11 The 3 rd Scenario of Possible Application Operational procedure to shorten the interfering time with the narrowband IUs during the channel switching 1)Detect the narrowband IU 2)Determine the position in the TV channel and bandwidth of detected IU 3)(Evacuate subcarriers to be necessary for sufficient guard band) 4)We can use the fractional bandwidth usage mode for control data transmission to move to a candidate channel. 5)If the explicit channel switching is successful, we will move to the candidate channel and clear the currently used TV channel for narrowband IU such as Part 74 devices

12 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 12 How much guard band is enough? To calculate the required guard band for the fractional BW operation, we assume the DTV spectrum mask as WRAN spectrum maskTo calculate the required guard band for the fractional BW operation, we assume the DTV spectrum mask as WRAN spectrum mask 4.8 uV/m at 3 m in 120 kHz bandwidthFrom the requirement of WRAN emission limit at FRD , if WRAN operates on the first adjacent channel to wireless microphone, the WRAN emission limit on the first adjacent and beyond channel shall be lower than 4.8 uV/m at 3 m in 120 kHz bandwidth –P/(4  R 2 )=E 2 /   P=4  (3) 2 *(4.8*10 -6 ) 2 /(120  =6.912* W –WRAN output power P = 6.912* W over 120 kHz  dBm/Hz or dBm/120kHz or dBm/500kHz

13 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 13 FCC DTV Out of Band Emission Mask

14 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 14 WRAN Emission dBm/Hz = dBm/500kHz Emission Limit and Path Loss

15 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 15 Original Mask d = 0 m Path Loss Mask d = x m 0 m x m Emission Limit WRAN Emission Mask with Path Loss

16 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide MHz 6.09MHz PL= [dB] d = 0m d = 20m CPE EIRP = 4 W(36 dBm/5.6 MHz), fc = 617 MHz, Resolution BW = 500 kHz Required Guard Band from WRAN Mask Total average CPE power without path loss: 36dBm/5.6MHz  25.5 dBm/500kHz Total average CPE power with path loss of 20 m: 25.5dBm/500kHz–54.27 dB  28.7 dBm/500kHz WRAN Emission Limit at FRD : 4.8 uV/m at 3m in 120kHz RBW  dBm/500kHz

17 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 17 Calculation of Required Minimum Guard Band Requirement of WRAN Emission Limit at FRD : –4.8 uV/m at 3 m in 120 kHz bandwidth –-75.4 dBm/500kHz Attenuation Slope of WRAN mask : –11.5(  f+3.6), where  f is the frequency separation from the channel edge Minimum Required Guard Band : –36 dBm/5.6MHz – 11.5(  f+3.6) = dBm/500kHz –  f = ( )/11.5 – 3.6 [MHz] Total CPE power can be reduced by path loss as follows : –Free Space Path Loss (Approximation) = *log(d)+20*log(f) [dB] –Where, d is distance(m) and f is frequency(Hz)

18 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 18 Required Guard Band Vs. Distance & Frequency PL=0; GB=6.09 MHz Distance Free Space Path Loss [dB]Guard Band [MHz] 54 MHz 174 MHz 470 MHz 617 MHz 806 MHz 54 MHz 174 MHz 470 MHz 617 MHz 806 MHz 10m m m m m Free Space PL = *log(d [m])+20*log(f [Hz]) [dB]GB = (111.4 – PL)/11.5 [MHz]

19 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 19 Fractional BW Mode Conventional Mode Advantages: Narrowband IU at the Edge f=617 MHz d=20 m *d : distance between CPE and wireless microphone

20 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 20 RF Filtering Issues in Fractional BW Operations Gerald’s Comments –At the output of the RF transmit chain, at least 30dB filtering rejection is required –Since the vacated portions of the TV channel would need to be adaptive in frequency, it is unlikely that such adaptive additional filtering will be realizable at low cost for consumer type CPEs ETRI’s Answers –The above problem is true if we use the fractional BW mode to operate WRAN within the same channel with a narrowband IU. –But the proposed fractional BW mode do not use the same channel with IU but the adjacent channel except control signal transmission for channel switching –So the conventional full BW filtering can be used in the fractional BW operation

21 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 21 Power Derating in Fractional BW Usage As the Shure recommended, we will follow the PSD curve to decrease the interference to narrowband IU The PSD curve from the Shure comments to the FCC Fractional BW EIRP 30 kHz300 kHz3 MHz 6 MHz 4 W 400 mW 40 mW

22 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 22 How To Detect the Fractional BW Mode? The fractional BW mode is identified by using a Preamble Total Number of Fractional BW Mode To Detect : Start position of fractional BW mode Fractional BW Fractional BW resolution Null Real BW of 8 MHz Start position of fractional BW mode Fractional BW mode zone Not applicable

23 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 23 Preamble Sequence for Fractional BW Usage (2K FFT) IndexFractional BWStart PositionPN Sequence (1680 bits) 010 0x251D994101EDA04D8BD0B8EA6FA20AE590C2CC199AB083C6AE61F091F2DD41D989EC164B1481D611BE9CEA0094AFE9DB56A4763F55B26E54EAB 73ACD7D4BBA64C1421BC3EB9D67113A5FB9C529AADC9CAB1FB CDB69AFCBADDF8B42314A7985B5F87C D350454FF FADAE4711DD0CC5DACEDF7CD5DF1177D60EBA4DBE657F19F08189EFC6B5DE6C2CFDCD13195DE077586B8EE01E00B6468B10A53FAAC1D D846E2A D444B6AD0D34C34EC9CFD EC9FBAE498F5A20614BDF3E4B22D 111 0x572B008CAE E9567C204CB881C66F6C70DC9316A4006F9CDF449C19E5EC29CCFC42786A82330FC7279F99F1DFCC4246B1234F792B EBA8DBDAC7FD337206F79ECC153683A184D9DA3A460683B79426E0DBCA16767E88C80F9AD350ABAEC257AA2EC18C741171DEF172E68321AF D830E1522D7A22959F8F68F521E939B909615C209109EFDC9A0433D1F4D9DB1AE DC E0C18D1C F27D886029EF1F8256A 51504E1F21E70B77B0067B9FBF6BD0D6030BB4B1C70AD11957E4270B5658F 212 0x9D7B838B01289DA478424A99E6B5C35E7D6D79FCC9ADEFEE741BFBD48261B9A427AE8994EB230CF27D770B7CDD53A01821C63ADD01236D481BF EF0085FF21DF2044E054E91138A69C50843F180D78BEB289D EEBDBF43E7CDDE879716A144C19AAF3E E4066F862C14194D4CE EC8F544CC4D30B78A6A4A72FA483C21F5369EE489E401DDF EF3E35E91E6197C6B1535B61F6EA FA5201D27564CC23A6CAF416 6E0B3FE7F4D455E2B34453BA699F CABA9AA175338D7F0CDA12D4A3AD 313 0xBBF8D4EE09564B33B49FFA D61EC7592A97D80A66FA6797B1A0C D49A6B2786BC9706F BD24F9A8BD86EEB C DFB2B477E2CF3F2067B4797FDF50B4B C18F69883FF74F8F55211D627A91EC477C2039A958EB DBE2D4794EE2D7AA2 FA22CC22FEF263F138D4D7935C24C66D F0066C35DCA3D28485E72FCBE46264A5F318C C0FDF2FB1D346D24BECE7DB1EABA81C BCA C81DF7686E0B DA8EBA F729F995ABACBD x3A13D1C743143CE5E66B0AC149147AA2E4624EF574EB4D49FC698483BFEB60FB07B286EDB255BC19C0AD0D53669AF9E41E7CF22795EAF0CDCB9F 1EBAF6979B05A0373A3C7403A2ED75B51F0ED77DEFC7146BA683E9373AF256A9A8FA81A15DB1F391EDA47A0E2064E5B330E38CBD6D4BD F0FCC9AC F18960E12E09036B276258B119541E1735B BA66A173431BD6ED9E660FD570C0C1452E13E4CA143086D60F8AE66EE4899A 9DD7E989BF44A8A197091C43EAEACA12E13C50E8FB5ADCA1A8F492CDEF1A0AC2D 515 0x9D6E088D4BF521B816766CDD6DEC121DD3C2101F30B8479CADA2EDA38CC97B865D78BDDC1A50843DCC6547D9B4CE4EF1A3E9661C DB 35E2E69D7404D52DACA4886F5DB3A7618C BB6229FF77EBB E D06909FBF8DE913CFB9CE716CDC719E686F DB4EFC A153A233B7B47347DD7913C97E5C07914B411BC9277B4CC25C75DD1D24FA639341EDC96FA683EDEE7B D1DEB7C3BB1258CBB63DD25C3BD 46EAD05DF6B28233C699CE94A50DCB0AF572D5122CDFCDEC143E679EDC0FEBB295C6A xF3E A8D30FF9DAA3AB6CBE5EC769CAB9F0E2F9FF3D1D C8A1A3EC4286F8207F1C69816CC13E995C38C1E4D62AD594B2B02CDEE 05A0F1BD18BCA09FC2B1DC72B54FD6C5B756181D012F5B24E124A D316CA0B61D0650B881457E42ABCAB9A8BA8A C53D D54F761B99B2A872B35E653B980A5B4823F260FD6264CBA397F4C A6D3F1DD1A78A21F75F7C46F8228A F4850A2899FE3EDCAEC69C 0D8F7933C8DEB6565D826E7E61A3DA46BD9072EE5C09D788A0D50ABE2E3D322ABD xFCAEC6B1C A48849AD347AE E7F2AAC5FF9904A2D0D904C931795A1BDA94D9DCABA8BA77152A69B89F008680F E591F3 EB3CF103BF97DA73BC87FC D50632F81BB D4A89AF6EAA0CB758CC334D02E08A507AC59E C201EA167347AA1A38 FBF47F198729D782C8B11A45AE F43C14875BE372D9B1B6C63C4557C0F347AC51755BCDB0AF3A1A C7FC1F1D30FB0BB4AA178CA3A F50CF6EDFFB05E92A7FD24ED9A72FEB5683E9615F4770B7B78A69E5C5E88C69E x1F6C5C088F9FF6E85171FF5434B95DEB270F1C926F738B D24EC3F7A1BEDC7CC3B913EC2DB60B C07C10DB5D036A9B48223CE4037E DD A97E739255E5BCC E64A80095A0B8A51992C869E2D7C39B7B7CC3EC81C7FA21F83F1C94069FC38315D84980E64CD2AF DBD6F99CA197FEC4945BA5B AB6EA8CB77E6757A960397B E5ADBCA0AC801E8C729C1727BAC69C19E738C10DD24133F3B790 7F3FB80D875989C094FBE2372F26E0E4C63DD4CD9D98520BAB1233EC69AC x1A EDA426EDA5EC69AEC0B9D77D733AC09338B2E66BCBA5F1960FEE2C08477CB6F80DB152B4EF01E7FBFD5961A16C954EFEB629124F 9789B ED05A0EF02CD9939DA46C95EDF9E5DEFA0D985E44FBFF754D4CB6BBFD82EFE94EB1AF0DB1F1805AC8BE2D856A C1 A8F3B ABD FCC3959FA77E20602E121D26ED907793A13CA16C5E7C3DEC1B2CE66F513DD788EF01513B99F0F984B4D788DEABA42AE D1EBB0F750D74EDB091BB7C0C446ED90AC4D353A0058F81F83C203A5FD4D47B877CD

24 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 24 Preamble Sequence for Fractional BW Usage (2K FFT) IndexFractional BWStart PositionPN Sequence (1680 bits) xFA CC41ADE3960B29C89DCAC398CEDFB2AB6BCB61D02B877208A71DD8760FFCABA CAE9AE7E7FF7633EAF24CD2AAC1229E1 0D CC20C46270E8F824FEF3C055C3DC5D036242B27FD016955C3681A454D31BEDB AC96042AD0353A0B5A1A9C0CE35F0E44A955C75 ADFBD24EDFA40D6EDD539C09F8EB52A8D478A5144A66D05F4758A19B4B230B61BB01258C805E79FBA5AEB6029CE5CE2ACA3EE91C06F581FA8FC C44D A5E67C16FA43C3AD29067B8A5B85E4320B9095BACA26480D9B6D1C x8C88EE32C92B5741BBF6A7026E0C A0A948EA318A316508A4602A75DED6AF1D33BCB0B83E8A3C7372E0779FC5C10AA16063AF A18EA324FBD5FECF499D83F3229CF1A140FD3C2FD1007DD6F6681F8257FBB325ADD55CE A50E652E2FC7E1474FBC8A09033B7BCDCCD80 D5F027A03A09E2B3FF77F4CEABCE57E70AC898A81B8138AF236A2FE0A8E E2B60E4F765714B4E44CA52DC1BEDA55E50B4B3E5DC6793A6BE 375A0C18C766D1A0ED770911C560D877CF7BB6175CF DC8B344D5A18F83C x449E35C07883E2ABD6A22ABFA5184B255C07DA69AA16CD1B8F0E1F2041EF30CF58F9B35461C47E707F288D27B5054F80CEDD C410D77F A2C8B13FFF317393FF18E6171F6C374EFB81960DA8DEA88D3C3F461D30847C6D45208A446C8A16FBBC7FE7C0B0EE2B55172B038EC3BD2286FA5062 AA1704BF9CEA1C893144F066A47C6B2E41DD7DCEBB256AA5D767A95ADEAA16B41F78A0B02B719CCFF AD1DFA8B9B63171E62353C7E0866 B030874D6F3C5D AEAA13B84510F32F6B10E2FBC63DE2D D02EFD4D x1D25DEB62791EDE39655AEDEA97A9AEAF47B6F9B6EE91EAD11C8EC3D4D20427DA69CFD04029EFEAC8C397B628486FC8A9CF02F988C F3 1D3E7E E2D6FB0743DCB C43E6321A0F34AD23F23226C8F80CC21D0E12899D77E5E704C85E8C63DC875DE091DF810369DA647ABA5F C7457E897D9B83B7A0E44C8BCBFC4ECF7DC7458B9C874D4070B7A EE04088ED915425C65E368F50621C72822B7F0E5929E DD267 DD1703FEB F50B596D1C3A6D6EDA CFC5A1989FEBA74261E7CAA xF270F26F424E2A669761D1EC6B2A8A3C59001C0874EDB343F0CEAD2557D78E0B56CC2C95DD49B4B6227B8397CE843DA55F1B9A8EE5EAC428A50F 1BAA18BB3180FD86EE5C23395D10F0E2CCE4EDD3F FA510CDE5169CAC10DF9575E32FD7AD26C3341EE5A211C69DE3C708A2E113591B6E17 94F43DD7B7AC96EC04A5F6F521F6ED11C88C5E6608D4827D1263C5E39C2FC8C931137D452FAF0EEF9865D765123D97B DA6A3C3DD0133C3F 52CBAD346C441E706F53A28BEF235E11A510CF31BEDD821E8A2FAA509E5F3E94B2A xCC8F8F3B6F7A0B374BD25741F524010D52F03A478D49061CC73800AEC229D48455DD93989C1653C7D53EAC75C3714B263E9E A78D21C5DB2 4D9092B05C66CB52DAC8FCEEC4F53BCC8E91F6B99D83EDC8CBE5E41C06F82230C16D25DF710D6BECE1F3EAAC2F9CDAA78D7E957A716EDE38D A75BA9793A3AD032032CAD32FE3D02CDF7BB194D504A5E8FB1C16063C45A144F9535B18D8816A5D8F3C38F53DF B510AAF1A264FC65 0BB936AA80BFABEF1977B4CBCF1A3C150F0032FA6B0AEBAAE8F9CDCC8004A516B1C x2B52DCE97FBA80D6D6C5DBCBFE0AA538C653F82295AD33C0C44BEA7E2FC404EDA8F19CF174E0F0E22CC3C50B6D21D10E29E43FDFB4FA6FA477 B4D4DB319A7404E0856B32BC63E88F3DA7AE6510A B86A516B4121AF602CC4285DD7BCCE4EE399D485367DD1A6F96F81798BF8F30B7DC94 CBDB4D312036B4E12D6EE936B33D072116A15DCDB10D9DA550D77149E4F821BDB35F0E09254EABAA086BEE404D61D4CF285CDA6E ADD83 BAA4541E86EFEE314763E64CA18D26C66BFC927AB0957D75DE9032F98A699D9D7AA19F1A xE94A5D80177E712FA798988E6F49B2789B8516FA6A742B568F81A013C25E850B4CCE1F3C5F2AC8E7ABBD4DB4FA489E5C759EE1DD7DF9C08983C3 F6E8809D46D1AE7C15452D77CA95AF0B35470CD735155FD0001DF71E E8029D68EC38D00435DCC7366A828B B3483C72CA19E67 B9F9AA15DC7B41F1B2E7123D B513DF84A70AB54631B118D5A15E6172AC5F7DD308521E94E14DA8D1A44794EDD7DD913E4F8EAEAF28 5F014CC168234ABD15C13CE426ECFF607FBA8F8029B410E8B096566FB352FD1F x3C116913AFE7DE AB763FDEDB008BE3BD9E37F8BCDEDB0588C AC54877FF779EE2D513621C2DB655C51A8F4CDE E16ABD 23F00B481A116EE32D7DFBE10D607FD7939AEB60D9FF74CA3EA8A DD F5464E05A1BC94E3BBBEFC57CF3C65055B794FD172FD1 EE64983AB905D2C22813A0AC5A0E5B EC0D6D26E0A8F68E8738C88B823990C3B83D4EE DA89786ED9AF9E3B9DFE16BB2A C8C8EF28B1DBEE4283AE339869E38C4F846ECDFC894B2B5C41F5115FC81F5E585E xFC5DF994EAC8040FA5D698214A9DFBD82603A486ED9541A25713E4F69E42B1AFF25932E125C52341EF B7E41D7E7D84B4D18BF0282D4A B821D57F FEB86E0AF15F0E67B88EA23205EADFA52E116E0D8F317A0CE57E A992A2BECE7B654289ABCB6ECFF65DA8B9B4E5 D9B64D541D56510EA480E369146D B7E87430B809D603363EC302D4B3E8B EF0B C7E C0DCC5F3CE E 2B62B528F19C07DFB10CAF50AA0AF9FF61D0BF50DB41F52F032FDF785A93

25 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 25 Preamble Sequence for Fractional BW Usage (2K FFT) IndexFractional BWStart PositionPN Sequence (1680 bits) xE590622AD61B126292A466306F78BCEDC5ABB7B572E12F6757E630E8C8C B7B81B2B5BABD9DA6E1A9E72FD54636D4C0DB378E00C3F8393 6BCAF5739B9E15C31E15C208CAF1EC0DCD05C8D06489C0B252DAB13B6F977B24A6D5658C669DD6A46259AD1261BABA817FA5521F1A40EF1EB61A 3DF44AA12F9CD0FA1802D92D627AC6A6CB8A801552EB316E2FCC38B9C85F1A73FD2AAC6CADF819480EE6B26EA926292C3C5F2510A73AF2404FD6 DEC37D767C0600AE95B9E73A52CF BCB78CBBE09152CDC66EB24CA24E0A7FED xDEB2569F05B6EC50AA5FC5C41BD58A3DED84D830061CA BEDB EFEDFD55AC5CE11995D08BFA13985E66033D310B567750CF 2254F9C91038A086CC986C95374E37FC983872C177D9CE718196F49CB74B2E365FF3AC68C1E320AEDBB062877E048DF8EF0EF03897FF3E95436E3EDEE 404FBC7CFF0E5B94F849FEF3F26EF1980B0E22D7941F541710ABCF34792FFB1DBA2D A69A970A0D49E509E44D6D51367C46D1710C18FB2A6A 8F E36A3646A30EE2D9B658BCDCE596013F6C899E366DF856789C0A70A x1A12F75C0C9F8E61A455BE516AA50779FBF773995A23FB74CA3A0064B57B34B3E97E4D2346ED789621F60427F4CB934F6B010DA179646D3F AD1BBFA6FB381B9B4A2152D5E2E5D29D49D51F3F1F791F6A538ACE124B27AC AA2405E61A41A394B4EF54027B55AC5A957054FA8D F1F68B9CC41DFFBD4D7E8D24D6F953733EF3C0A037E369B33994F81C8DF6986BE35D9A954D3083B6E15C3C3A1BBEC1B2A9AC72057D9DD55DCF4C C11608C955C2D858DF674060D61F69DE2128CB9FDD3207E94A432E43FE564788D2E x8EDA9C07ABED84B01AEADD7B9E2E44CDEE57DA71167BB595A4816D6A0C C94FA8187FBED B35E8F9D6C8A762042B9109E38DD F46D4A2ECE74F5169CD1DA53A3C5DFD87AF30DCBBD25C3988C67C2FD1A09EFEDEFA1448DC617406AB EFD3F294FB1FA81C81D3F211AE4 CA224A8BB7E66F6A49FEE64E06318E0AC8BC0CF18EDCB89E9926EE8C70904EDEFC35DCB82D55A1A453A2285FF5E402D9EE B07B2261EDA3 D4E1E B84AA425684B3522E2754F8D063C344C97E89789E xE412585CCE50D9085B A1BD0FEAAE869DCA1BB02CBA8C740277D9109B01FF4795AC5FEDE2EE8D1CBA CBBD016FB290C3C982F B02E BC9871F0095AF520708D6F62B7E87F9878A81B07C10A593805C3B6C89A99E2C869B7B27E716D6D32044D5FC398303A3F174FE0AE60 D999A8F484B3DA3A24FD46FBD62C3F46E876016E0D6977E7FE95929CE4EE897C208BD4D843DA A8E63F3AF3479FA319ABCDD9D6E935492B1 F69905A7D5FD0FCB82122AC992CFF792CF205B7C19939DEFE09BF9A9AC2130AA x4E4619AC52338D30E083955AE0E651F15C200716A38A0FFA797F F7AF1A0CDD02E09FBB4BE15B48F7786EB19972FD5704B38EAE8461EE BF84A424B D9AC C73115C147E CC12D6EC47B3F2FA7366D0E06F6C98486C66A6CD014DAA52070B883B6D0F69F285 FEB823E5AD36E14827A66FCADD A65D6A2E2EDE44E2D3FF3DFB1F23D8C3BEE10E0AA201E8A51083B6BC92B93CBBD3171F53C57A8C66 BEEFE12E07B7C2F78C59F6802FA0A8BD15A926C8E7A715FC433F4B29381CD xDD4B1D03BA20AC449E2F66A FF6D3C2E65088A0E66F5B3FE AE93F05C079397E94CAF2636D6F7B9E455AE92D9DB4D543F6E9FCA53 9A94FEE60D9E42C0B9073A18C6A8AF3DBD83AEC13DEB77B93A47CF1EE9535E4EB63E320C5E1DCA1CC5878BA832365F1D0E3C410E08BC DF 74D46BB29124CF63461A C239B C5D9F2929CC521E4E1477FDECDA6A72AAF4CB9E427D8F86D1C5DCB49B7F01F51461EC3928A742B 7C4905AE63ADF C699433D003388D0D890B537336AA49ECDA150B825B93A xA3DF9B7DD4B3DBF50AB B13E97DBD61D CCFE7ABCC47B9DB1E63DF50B85E71E653650A8D2B5A478761D21C5EB838BFBCDBC88 BB1E6254F914944FCC3683EAA232D52E3A1A E10E6473FB9D9B4C19A99D4CE64D7DC99ED7353C65FC4F52E1826D2DCB8571C12252A5D759 AF55FEC E341CA206F74EFE3D1E15B64A5E41EB26F4B4D3C13E88F78BB038F3EB5155D9AC3BD3DDEB9FF97ADA2E055C10B1C DC911BD1A3D0343B60F72B58EF21C35D1DBD56B26D4E2E36449BECDA9DE085C1457B x87A0F05AC F826DD0FBD6353C6D46D5064E50DB4FA986D34AD0CEC06E8821EA99592CABB88F52B1005BA80F284318CBCD4D3F61DC588 E9FBBD4FD58E145A3C11A83FF76449D83F6D4E E64A930883E66287C5D74EC2FD045961BF76AA2FD49AACFC59032E2CAEB6F23738BD6EE7F F75DD3DE180FF6C5DD3C50CE89866C85C0E5DB1D4E F22A A5B92DCB300BA8992ABE39BABB4C00C D05649ACA15CD 96F6A3E9636A0C12EE32D2277EAF1A0B8855DFD4D80D6D1C7FE48773AF2901DBE x78AFF7904ECDA788CBFD5A172D55899E2763E37592B BFC662568EDA2E2FBEE430E16D8529C0DAA31A449B561A39871E948DBC8A6796 7B6264C957FEB3E42A8DEF0500DF954039ABC94D4B2A91C71EBA98BFBEFC5C677DD7C058EE634B4CDB1E A0464CE7CF262A93F1AEADB2F F6FD6ECF24CDA514B7F31427B52AA367BA C8A259683C6A39592CE5CDE37CDE1FDC AA183C22ABB188C8C92DBFA7588BA6A3C1 8168F3EDF77220AEE954CA569916D26EBAA180B006815F3E995AEC29B3F02B1A0A7D53B

26 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 26 Preamble Sequence for Fractional BW Usage (2K FFT) IndexFractional BWStart PositionPN Sequence (1680 bits) xD565FEC11A CC174E0A66E16A705341BFB345149E12122E7032E3A521EC1513A02D4B AC73A197B DCC5C9B913E97B61C 8AF228A8E939A8A3C44B64BFCB7B9DC0F032D6E16A6B087FA3F5113C592481EE7181BCBE2FC6AA0AE0F24A72504BFAFE C116CAF3B B C22B0E1448F6D34875B6EE97E8BF9E AADCBCC59EDCE8D CB9FC8DD21EDA63BB324F B61C769E41AC45204 D74BD3E8036B0AF15B561647C2A6CDE18004C72EFF8230C0DD53699B1D1EE8CAE66F84A xBB26559EE4045BA6A72853A4880F292D5E38BFED53B83902B8A732CD1E6166A46EB7C772B27B78455AC7155FF B4A9B480D8261F5 2E39E96287BA8F9F33B8F0CE FF6767ACBCD1AC1760FEEA1A1B2B283DFE0CE32C9F69DCEADA6CC69CBB54F9DA65E5C2429FD6E0E F7ABA7E2E3EE8A6A7431A1509D6E47A99372AC8CDEC063452CDF52B57D77B5A007A8BB4E44B407FAF BC722A5CDA66CA0AD11 EFF2588C652CD1D318316B03364A706F84B4CE8CB74D55150DDB4A38B BC8C897FF xF01479FB02CB48E8680F0F96D03585B65948E61A1B3680FC8C41F7B77C0F010CDA3AEACFECF0E2381B849AA2256CEBCF1961DF821E92D514AD 3171D072D49A668F455BCC1983F2289AEF24C7CDE0B77AA45FC714655BB1DD79061B01AC17BA72F036CAF28A739ABAD32FBE16A8D11BD6FB32 CEDEF C1A46C29A6522E2C0C39313EC0BAEDD854568DC72FF6D30C0BB4A2CDF5F CF1FAA3707C13B7B7AA258A50C1986FEE2 E29DB5872D9A9BAAFDEE652E0A0D6D49EFD1D166BC647353B50A27E36235E85D8DEE442C2713B xBFD632344B3E99407A6544D5430C44CDB1F7DD26236D6A233CBCC76AA3A3D5A4B316D9E0AC2D3D802055DE0AF83E8D283DCB9E085F258CED D1B8F24D9B35F3F1C78FB40894CEBDB4C66EAB9C C8C E597D86EE618E1A68DD24C911D27E130FE7CE7AA1BC8BD6A5509D52E FEAF43D99E1013A2D232B004D824CDBCC435109E3EDBE2EFC10E710CAEBA8EC2F741EFF45456BEE EB3F349FC91F AE82E171B79 1D A263AB902762AF83DA2E2C0D9FEE4F8C8D2B4C932091B81B09426D1D2B x5359F9905DDF52E2EE E32CB6195A085363EB55E7CF4CDA121F27B4D7B89B413FF3E913B6BDA7130DD7904BF697B21BCB766016D8302E 22DCB7C75BAC4F3A007063E8D4B4CF479E A505898A6D544D9D6E2E47CF038194CF0AA2A FBCA3DA1545A0B49D9A97E35DCBB89 FDD28A515DB A6A5B258AF23E AAEAF490291E7C49FA56A41EB325C D321F55AF3BA75881A A675A006029F E E883B87712D61A0D6D6EA964EFC6A81E169A9CF291FB402B63FEC xF9972D541E87459C C0E0563AB7560F01EAC20C2E11D2404D557B0F8A27D6C338FA5F49DDB D8138A27F035FC6A6A21EB7C45 13E9FBD64BFCEC735F1D630907B9FC868F D283A1958B6BD4483DF5D827FC41EB59629FB14B1B7600AD29B1F452C15DFC936DAC8C BCB825897DD4A210ABD7309F8D5A239B7FE9EFF822A650C47AC6736D9FB29A65FD284CB F69DCB510D8B84CC0BB56849EFD483BC0 E06544CC37E5E66EBC168BB55BABE2E68478ED77CD96C435FE85F01F24D51169AF7C39A

27 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 27 Flow Diagram of Fractional BW Mode Detection CPE Power On Fractional BW Mode Detection Using Preamble Decoding Superframe Control Header (SCH) Fractional BW Usage Mode Decoding Frame Synchronization Superframe Preamble Start Position Detection Signal Detection & Automatic Gain Control Channel Bonding Information Channel Estimation

28 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 28 Mode Detection Procedure Between Superframes Yes No CPE power ON In the next superframe, confirm the previous Fractional_BW_Mode (Correlation with previous superframe preamble sequences) If the Correlation_Out is greater than Threshold Yes No In the first superframe, search the initial Fractional_BW_Mode (Correlation with all superframe preamble sequences) Detection of initial Fractional_BW_Mode is completed! If the Correlation_Out is greater than Threshold Present Fractional_BW_Mode is equal to the previous one!

29 doc.: IEEE Submission July 2006 Sunghyun Hwang, ETRISlide 29 Mode Detection Example Between Superframes Example: Transmitted Superframe Preamble Index Correlated Superframe Preamble Index Detected Superframe Preamble Index All The Correlation_Out is less than the Threshold Search all Fractional_BW_Mode again Fractional_BW_Mode is changed


Download ppt "Doc.: IEEE 802.22-06-0117-00-0000 Submission July 2006 Sunghyun Hwang, ETRISlide 1 [Fractional BW Usage for WRAN Systems] IEEE P802.22 Wireless RANs Date:"

Similar presentations


Ads by Google