Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Introduction to Photosynthesis. IB Assessment Statement State that photosynthesis involves the conversion of light energy into chemical energy.

Similar presentations


Presentation on theme: "The Introduction to Photosynthesis. IB Assessment Statement State that photosynthesis involves the conversion of light energy into chemical energy."— Presentation transcript:

1 The Introduction to Photosynthesis

2 IB Assessment Statement State that photosynthesis involves the conversion of light energy into chemical energy.

3 Photosynthesis Basics Location: chloroplast or prokaryotic equivalent. Reaction: Traps light energy (photons) and converts it into chemical energy. Organisms: Prokaryotic and Eukaryotic Substrate: Inorganic CO 2 and H 2 O Products: Organic compounds (sugars) and O 2 Environments: Aquatic environments with light, terrestrial environments with light. There are even extremophiles that can photosynthesis at some extreme latitudes and altitudes. At extreme high temperatures we see photosynthesis in geothermal active regions.

4

5 IB Assessment Statement State that light from the Sun is composed of a range of wavelengths (colours).

6 Light, Wavelengths, Color Light from the sun is composed of a range of wavelengths (colors). The visible spectrum to the below illustrates the wavelengths and associated color of light. Combined together these wavelengths give the 'white' light we associate with full sunlight. The shortest wavelengths are the 'blues' which have more energy. The longer wavelengths are the 'reds' which have less energy.

7

8 Light, Wavelengths, Color

9 IB Assessment Statement State that chlorophyll is the main photosynthetic pigment.

10 Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Plant cells Chloroplast

11 Chloroplasts — have saclike structures that contain chlorophyll. Chloroplast Saclike structures

12 Chlorophyll Molecule

13 Chlorophyll Chlorophyll is the main photosynthetic pigment. This is where light energy is trapped and turned into chemical energy. The head of the molecule is polar and composed of a ring structure. At the heart of this ring structure is the inorganic ion magnesium. This is the light trapping region of the chlorophyll molecule. The tail of the molecule is non polar and embeds itself in membranes in the chloroplast.chloroplast. – There are other pigments, reds, yellows and browns but these are only usually seen in the experimental chromatography or if you have been lucky enough to witness the autumnal colors of deciduous trees in a temperate climate

14 IB Assessment Statement Outline the differences in absorption of red, blue and green light by chlorophyll. Students should appreciate that pigments absorb certain colours of light. The remaining colours of light are reflected. It is not necessary to mention wavelengths or the structure responsible for the absorption.

15 Visible light Gamma rays X-rays UV Infrared Micro- waves Radio waves 10 –5 nm 10 –3 nm 1 nm 10 3 nm10 6 nm 1 m (10 9 nm) 10 3 m nm Longer wavelength Lower energy Shorter wavelength Higher energy Visible light consists of colors we can see, including wavelengths that drive photosynthesis

16 Chlorophyll & Light The 'peaks' show which wavelength of light are being absorbed. Look at the x-axis for colors of light absorbed at the 'peaks'. The main color of light absorbed by chlorophyll is red and blue. The main color reflected (not absorbed) is green. Hence why so many plants are seen as green, the light is reflected from the chlorophyll to your eye.

17

18 Light Wavelength & Photosynthesis Virtual Lab ts/science/virtual_labs/LS12/LS12.html ts/science/virtual_labs/LS12/LS12.html

19 IB Assessment Statement State that light energy is used to produce ATP, and to split water molecules (photolysis) to form oxygen and hydrogen.

20 Light energy is used to produce ATP. (a) Light is absorbed by chlorophyll molecules (green) on membranes inside the chloroplast. This is the light trapping stage in which photons of light are absorbed by the chlorophyll and turned into chemical energy (electrons).

21 Light energy is used to split water molecules (photolysis) to form oxygen and hydrogen Photolysis(c): Water used in photosynthesis is split which provides: – hydrogen for the formation of organic molecules. (C 6 H 12 O 6 ) – oxygen gas is given off.

22 Light reaction animation mations/content/harvestinglight.html mations/content/harvestinglight.html

23

24 LE 10-5_3 H2OH2O LIGHT REACTIONS Chloroplast Light ATP NADPH O2O2 NADP + CO 2 ADP P + i CALVIN CYCLE [CH 2 O] (sugar)

25 IB Assessment Statement State that ATP and hydrogen (derived from the photolysis of water) are used to fix carbon dioxide to make organic molecules.

26 ATP and hydrogen (derived from the photolysis of water) are used to fix carbon dioxide to make organic molecules. H + from the splitting of water are combined with carbon dioxide to form organic compounds like sugar. Bonds are formed between the carbon, hydrogen and oxygen using the energy from ATP (which came form the sun). C, H, O are enough to form lipids and carbohydrates. With a Nitrogen source amino acids and therefore proteins can be made. Plants have this remarkable ability to manufactory all their own organic molecules and by definition all the basic organic molecules required by all life forms

27 LE 10-5_3 H2OH2O LIGHT REACTIONS Chloroplast Light ATP NADPH O2O2 NADP + CO 2 ADP P + i CALVIN CYCLE [CH 2 O] (sugar)

28 IB Assessment Statement Explain that the rate of photosynthesis can be measured directly by the production of oxygen or the uptake of carbon dioxide, or indirectly by an increase in biomass.

29 Measuring Photosynthesis Rate Processes like photosynthesis and respiration can be measured by either: – Depletion of substrate. – Accumulation of products Photosynthesis Equation: – Carbon dioxide + water ----> Organic molecule + Oxygen The rate of photosynthesis can therefore be measured by: Depletion of substrate which includes measuring how much carbon dioxide has been used or how much water is used. Accumulation of product which might include measuring how much oxygen is produced or organic molecules (biomass) produced.

30 Photosynthesis Experiment Example In this simple experiment the accumulation of oxygen is measure of rate of reaction. Independent variable: Light Intensity or wavelength of light. Dependent variable O 2 volume against time Method the collection of gas over water. Specimen: Pond weed Elodea

31

32 IB Assessment Statement Outline the effects of temperature, light intensity and carbon dioxide concentration on the rate of photosynthesis. – The shape of the graphs is required. The concept of limiting factors is not expected.

33 – Factors Affecting Photosynthesis Rate Many factors affect the rate of photosynthesis, including: Water Temperature Intensity of light Amount of carbon dioxide

34 Limiting Factors The concept of limiting factors in photosynthesis: – A factor that can decrease the RATE of a Reaction, like photosynthesis. – Carbon dioxide concentration, light intensity and temperature are all limiting factors in photosynthesis.

35 Rate Limiting Step = Rate determining Step The concept of rate limiting step – As we know photosynthesis is a complex process with multiple steps. –The rate of photosynthesis is controlled by the step that is occurring the slowest. –We call this step the Rate Determining Step.

36 Effect of Carbon Dioxide Concentration on the rate of photosynthesis a) O 2 is used up as the plant is not photosynthesizing but only respiring. (b) As the concentration of the carbon dioxide (substrate) increases the rate of reaction increases. (c) The atmospheric levels of carbon dioxide and the associate rate photosynthesis. (d) Maximum rate of photosynthesis (see section e). (e) The is a range of values for different plants reaching their saturation level with carbon dioxide. One the saturation level has been reached there is no further increase in the rate of photosynthesis

37 Effect of Carbon Dioxide Concentration on the rate of photosynthesis At low CO2 concentrations carbon dioxide is limiting the rate of photosynthesis The rate limiting step would be the point where CO2 bonds with RuBP forming the 6 carbon sugar in the clavin cycle during the calvin cycle At high CO2 concentrations some other factor is limiting the rate of photosynthesis.

38

39 Effect of LIGHT INTENSITY on the rate of photosynthesis The effect of light intensity on the rate of reaction. Light energy absorbed by chlorophyll is converted to ATP and H + see section At very low light levels (a) the plant will be respiring only not photosynthesising. As the light intensity increases then the rate of photosynthesis increases. At high light intensities the rate becomes constant, even with further increases in light intensity there are no increases in the rate. The plant is unable to harvest the light at these high intensities and indeed the chlorophyll system can be damaged by very intense light levels.

40 Effect of LIGHT INTENSITY on the rate of photosynthesis At low light intensity, light limits the rate. The rate-determining step would be the production of NADPH and ATP in the light dependent reaction. At high light intensity, some other factor limits the rate of photosynthesis.

41

42 Effect of Temperature on the rate of photosynthesis The graph the left should look familiar as this is the same one covered in the section on the effect of temperature on the rate of an enzyme catalysed reaction.effect of temperature on the rate of an enzyme catalysed reaction. (a) Increasing rate of photosynthesis as the kinetic energy of reactants increases. (b) Maximum rate of reaction of photosynthesis at the 'optimal' temperature. (c) Decrease in rate of photosynthesis as the enzymes become unstable and denature.

43 Effect of Temperature on the rate of photosynthesis At low temperatures, all the enzymes that catalyze the reaction of the Calvin cycle work slowly. At intermediate temperature the optimum temperature for the enzymes are reached and some other factor limits the rate. At high temperatures the enzymes of the Calvin cycle do not work properly.

44

45 Summary of effects of Limiting Factors


Download ppt "The Introduction to Photosynthesis. IB Assessment Statement State that photosynthesis involves the conversion of light energy into chemical energy."

Similar presentations


Ads by Google