Download presentation

Presentation is loading. Please wait.

Published byJennifer Oyler Modified over 2 years ago

1
2D ANSYS analysis of the QXF structure Mariusz Juchno QXF internal meeting 19 February, 2013

2
Keypole material and size Keypole slot added 19/02/2013 Mariusz Juchno2 L W/2D

3
I 0 = -19670 A Keypole – D = 4.64 mm (from HQ drawing) – L = 10 mm – W = 6, 10,15 mm (8 mm hole needed) Shellth = 27 mm Interf = 650 um P bladder = 41.7 MPa (for interf + ~100 um) Special cases to illustrate possible adjustment – (*) Interf = 600 um -> P bladder = 38.9 MPa – (**) Interf = 625 um -> P bladder = 40.4 MPa Parameters (155 T/m, 90% of I ss ) 19/02/2013 Mariusz Juchno3

4
Keypole study summary 19/02/2013 Mariusz Juchno4 MatWCoil σ eq max warm Coil σ eq max cold Iron σ eq max warm Iron σ I max cold Coil p cont Al6 mm101164208233-4.5, -12.4 10 mm102164199234-4.3, -12.6 15 mm104165190234-4.0, -12.8 G1010 mm106167195233-8.1, -14.7 15 mm109168190232-9.3, -15.7 SS10 mm100162202234-2.4, -11.1 15 mm100162190235-1.1, -10.7 Ti10 mm101161201235-1.2, -9.6 15 mm1021601902350.7, -8.8 G10 *10 mm99164185223-3.6, -11.8 G10 **15 mm106167183228-7.0, -14.1

5
Keypole width variation – effect only visible in case of iron σ eq max at warm Thermal contraction and elastic modulus plays important role for coil contact pressure (preload) Best candidates: – G10 Simplifies insulation scheme Bigger thermal contraction -> intercepts less force Might allow to reduce preload Risk of loosing contact with collars – Titanium Can be integrated in the pole Smaller thermal contraction -> intercepts more force Requires more preload 19/02/2013 Mariusz Juchno5 Keypole study summary

6
Sensitivity study Mariusz Juchno QXF internal meeting 19 February, 2013

7
Interference 19/02/2013 Mariusz Juchno7

8
Interference 19/02/2013 Mariusz Juchno8 P bladder adjusted to always have +100um more than interference

9
19/02/2013 Mariusz Juchno9 Shell thickness

10
19/02/2013 Mariusz Juchno10 Iron σ I stress at cold slightly more sensitive than in interference case OD is fixed P bladder adjusted to have fixed interference

11
19/02/2013 Mariusz Juchno11 Pad thickness

12
19/02/2013 Mariusz Juchno12 Yoke (busbar slot) Pad (corner) Gain (when decreasing padth): – Reduction of iron σ I stress at cold – Improve the contact (L1 more than L2) – Should improve keypole contact Loss (when decreasing padth): – Increase of stress in the coil – Increase of stress in the iron at warm (pad cornet – might not be important)

13
19/02/2013 Mariusz Juchno13 Vertical key position

14
19/02/2013 Mariusz Juchno14 Gain (when shifting the key down): – Reduction of coil stress at cold – Reduction of the pole contact offset between layers – More space for the bladder Loss (when shifting the key down): – Increase of σ I stress in the iron at cold (mostly busbar slot) – Chance for losing keypole contact

15
19/02/2013 Mariusz Juchno15 Key length

16
19/02/2013 Mariusz Juchno16 Gain (when lowering the bottom face): – Reduction of coil stress at cold – Reduction of the pole contact offset between layers – Smaller chance for losing keypole contact Loss (when lowering the bottom face): – Increase of σ I stress in the iron at cold (mostly busbar slot)

17
19/02/2013 Mariusz Juchno17 Pad Engagement (?)

18
19/02/2013 Mariusz Juchno18 Pad Engagement (?) Gain (decreasing eng): – Control over the pole contact pressure (not significant) – Space for axial rods Loss (decreasing eng): – Plasticization of the pad corner (artifact?)

19
19/02/2013 Mariusz Juchno19 Busbar slot angle

20
19/02/2013 Mariusz Juchno20 Busbar slot angle Gain (when increasing): – Small reduction of σ I stress in the iron at cold

21
Design Criteria Work in progress 11/15/2012 2nd Joint HiLumi LHC - LARP Annual Meeting - H. Felice 21 Pole-coil contact at 155 T/m (90% of I s ), p cont ≥ 2 MPa in midpoint Max bladder pressure < 50 MPa (better 40 MPa?) Bladder should open the interf=interf nom + 100μm σ eq coil max ≤ 150-200 MPa at 4.3K and 155 T/m ≤ 100 MPa at 293K All components σ ≤ R p 0.2 For iron at 4.3K (brittle) σ I ≤ ~200 MPa MaterialR p 0.2 [MPa] 293 K4.3 K Al 7075480690 SS 316 LN3501050 NITRONIC 403531240 MAGNETIL180723 Ti 6Al 4V8271654

22
Parameters tuning 19/02/2013 Mariusz Juchno22 ParameterReferenceModified MaterialAlTiG10 Kpw15 mm 12 mm Interf650 um+0 Shellth27 mm-2-2 Padth42 mm-4-2 Keyy27 mm-2 Keyh12.7 mm+4+2 Eng33 mm-6-50 Busdeg30 o +2

23
Structure state (90% (1), and 80% (2) I ss ) 19/02/2013 Mariusz Juchno23 ReferenceModified AlTiG10 15 mm 12 mm Coilσ eqv (b)104107110105 σ eqv (k)71757775 σ eqv (c)172174184180 σ eqv (g)165148 (1), 131 (2) 163 (1), 146 (2) 160 (1), 144 (2) Ironσ eqv (b)190174180175 σ eqv (k)196170180175 σ I (c)219180192186 σ I (g)234194 (1), 192 (2) 208 (1), 205 (2) 199 (1), 197 (2) p blad (gap) (3) 42 (750,767um)40 (740,760um)40 (733,753um)39 (730,750um) P cont -4, -12-2, -5 (1) -24, -17 (2) -11, -14 (1) -33, -27 (2) -7, -11 (1) -28, -24 (2) Kp gap0 um ~0 um0 um (3) P blad conservative due to model symmetry, otherwise around 10% lower -> lower coil and iron stresses during bladder operation

24
Straight vs Round Collars Mariusz Juchno QXF internal meeting 19 February, 2013

25
Geometry 19/02/2013 Mariusz Juchno25

26
Coil contact 19/02/2013 Mariusz Juchno26 Trapezoid collars – Possible to obtains similar contact on the midnode Round collars – Layer 2 not evenly loaded while layer 1 overloaded – Tension-compression transition close to the midnode -0.8 MPa -7.7 MPa -11MPa -7 MPa

27
Collar contact 19/02/2013 Mariusz Juchno27 Trapezoid collars – More uniform contact distribution over the length similar to coils height Round collars – Force transfer close to the midplane -> layer 2 gets not enough preload

28
Structure state 19/02/2013 Mariusz Juchno28 ReferenceRound Al 15 mm Coilσ eqv (b)104107 σ eqv (k)7186 σ eqv (c)172200 σ eqv (g)165137 Ironσ eqv (b)190 σ eqv (k)196191 σ I (c)219214 σ I (g)234231 p blad (gap) (3) 42 (750,767um)42 (752,764um) P cont -4, -12-14, -4 Kp gap0 um8 um Overloaded 1st layer (200 MPa in the coil after cooldown, and much higher contact pressure) 2nd layer not sufficiently loaded – keypole gap opened Round collars seem les sensitive to optimization due to force transfer close to the midplane

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google