Download presentation

Presentation is loading. Please wait.

Published byTucker Plaskett Modified over 3 years ago

1
Generalized Regional Admixture Mapping (RAM) and Structured Association Testing (SAT) David T. Redden, Associate Professor, Department of Biostatistics, University of Alabama at Birmingham

2
Acknowledgements Jose Fernandez Jasmin Divers Kelly Vaughan Solomon Musani Hemant Tiwari Miguel Padilla Michael B. Miller Rui Feng Nianjun Liu Guimin Gao T. Mark Beasley Robert P. Kimberly David B. Allison

3
The problem and the promise Admixture, the event of two or more populations with different allele frequencies intermating, creates offspring with linkage disequilibrium that spans a greater distance than in a panmictic population. Admixture, the event of two or more populations with different allele frequencies intermating, creates offspring with linkage disequilibrium that spans a greater distance than in a panmictic population.

4
The problem and the promise This admixture process can, under some circumstances, create disequilibrium between pairs of unlinked loci and thus create confounding (spurious associations, inflated false positive results) in genetic association studies between trait and marker. This admixture process can, under some circumstances, create disequilibrium between pairs of unlinked loci and thus create confounding (spurious associations, inflated false positive results) in genetic association studies between trait and marker.

5
The problem and the promise The classic example is found in Knowler et al (1988). They reported an association between an HLA haplotype and diabetes for Pima Indians. When the analysis was repeated stratifying subjects by amount of European ancestry, the observed association between HLA haplotype and diabetes was not present. The classic example is found in Knowler et al (1988). They reported an association between an HLA haplotype and diabetes for Pima Indians. When the analysis was repeated stratifying subjects by amount of European ancestry, the observed association between HLA haplotype and diabetes was not present.

6
The Problem GIGI YIYI AiAi

7
Structured Association Tests In response to this problem, many authors have proposed a collection of methods we will collectively call SAT. In response to this problem, many authors have proposed a collection of methods we will collectively call SAT.

8
The promise Regional admixture mapping (RAM) methods use genome wide ancestry and region specific admixture estimates to identify specific regions of the genome potentially harboring loci influencing the trait. Regional admixture mapping (RAM) methods use genome wide ancestry and region specific admixture estimates to identify specific regions of the genome potentially harboring loci influencing the trait.

9
The promise (Illustrated) Hypothetical Segment of an Admixed Individual. Hypothetical Segment of an Admixed Individual.

10
Objective of the Paper To extend both Regional Admixture Mapping (RAM) and Structured Association Tests (SAT) into a regression modeling framework. To extend both Regional Admixture Mapping (RAM) and Structured Association Tests (SAT) into a regression modeling framework. This would allow for tests of dominance, allow for either continuous or dichotomous outcomes, and allow for inclusion of covariates. This would allow for tests of dominance, allow for either continuous or dichotomous outcomes, and allow for inclusion of covariates.

11
Regional Admixture Mapping Using a sample of admixed individuals, estimate each individual’s ancestry as well as estimate the ancestry of an individual’s alleles within specific genomic regions. Using a sample of admixed individuals, estimate each individual’s ancestry as well as estimate the ancestry of an individual’s alleles within specific genomic regions. Given the increased linkage disequilibrium in admixed populations and assuming a disease/phenotype which is more prevalent within a parental population (P d ) genomic regions exhibiting a high number of alleles from P d may harbor/be linked to causative alleles. Given the increased linkage disequilibrium in admixed populations and assuming a disease/phenotype which is more prevalent within a parental population (P d ) genomic regions exhibiting a high number of alleles from P d may harbor/be linked to causative alleles.

12
Regional Admixture Mapping By comparing regional admixture estimates to an individual’s total admixture estimate, some authors (Zhu et al 2004, Patterson et al 2004, Montana and Pritchard 2004) have recommended case only designs. By comparing regional admixture estimates to an individual’s total admixture estimate, some authors (Zhu et al 2004, Patterson et al 2004, Montana and Pritchard 2004) have recommended case only designs. Other authors have recommended comparing regional admixture estimates between cases and controls. Other authors have recommended comparing regional admixture estimates between cases and controls.

13
Structured Association Tests The SAT approach seeks to test for the association of a marker and phenotype after making adjustments for population stratification. The SAT approach seeks to test for the association of a marker and phenotype after making adjustments for population stratification. Examples include Devlin and Roeder (1999), Pritchard et al (2001), Satten et al (2001). Examples include Devlin and Roeder (1999), Pritchard et al (2001), Satten et al (2001).

14
Structured Association Tests All examine for association between markers and case/control status. The methods have not been generalized to continuous outcomes. All examine for association between markers and case/control status. The methods have not been generalized to continuous outcomes.

15
Our Proposed Model (RAM) Y i = β 0 +β 1 A i +β 2 (P 1i *P 2i ) Y i = β 0 +β 1 A i +β 2 (P 1i *P 2i ) +β 3 A i,j,1 +β 4 A i,j,2 +ε i A i is the ancestry for the i th individual (to be estimated) which is (P 1i +P 2i )/2. A i is the ancestry for the i th individual (to be estimated) which is (P 1i +P 2i )/2. P 1i is the ancestry of Parent 1 and P 2i is the ancestry of parent 2. P 1i is the ancestry of Parent 1 and P 2i is the ancestry of parent 2.

16
Controlling for Ancestry Let P = ancestry of parent 1 from population D Let P 1 = ancestry of parent 1 from population D Let P = ancestry of parent 2 from population D Let P 2 = ancestry of parent 2 from population D Let Vbe the number of alleles at a random loci that their child has from population D Let V i be the number of alleles at a random loci that their child has from population D

17
Controlling for Ancestry P(V i = 0| P1 P2) = (1-P1)*(1-P2) P(V i = 0| P1 P2) = (1-P1)*(1-P2) = 1 – P1-P2 +P1*P2 P(V i = 1| P1 P2) = P(V i = 1| P1 P2) = (1-P1)*P2+(1-P2)*P1 = P1+P2-2*P1*P2 P(V i = 2| P1 P2) = P1*P2 P(V i = 2| P1 P2) = P1*P2

18
One Possible Model (RAM) Y i = β 0 +β 1 A i +β 2 (P 1i *P 2i ) Y i = β 0 +β 1 A i +β 2 (P 1i *P 2i ) +β 3 A i,j,1 +β 4 A i,j,2 +ε i A i,j,k is a (0,1) indicator variable indicating whether the i th individual inherited k allele at the j th locus from population D. A i,j,k is a (0,1) indicator variable indicating whether the i th individual inherited k allele at the j th locus from population D.

19
Proposed Model (SAT) Y i = β 0 +β 1 A i + β 2 (P 1i *P 2i ) Y i = β 0 +β 1 A i + β 2 (P 1i *P 2i ) +β 3 G i,j,1 +β 4 G i,j,2 +ε i G i,j,k is a (0,1) indicator variable indicating whether the i th individual inherited k allele at the j th locus of type M. G i,j,k is a (0,1) indicator variable indicating whether the i th individual inherited k allele at the j th locus of type M.

20
Further Issues Literature confuses the terms ancestry and admixture. Literature confuses the terms ancestry and admixture. Individual admixture (W i ) is the proportion of alleles in an individual’s genome that an individual has from population D. Individual admixture (W i ) is the proportion of alleles in an individual’s genome that an individual has from population D. Ancestry (A i ) is simply the midpoint of the parental ancestries. Ancestry (A i ) is simply the midpoint of the parental ancestries.

21
Further Issues In fact W i = A i + u i where u i is a combination of measurement error and biological effect. In fact W i = A i + u i where u i is a combination of measurement error and biological effect. E[W i ] = A i. E[W i ] = A i. All software (Structure, Admixmap) we are aware of provides estimates of individual admixture, which are error contaminated estimates of ancestry. All software (Structure, Admixmap) we are aware of provides estimates of individual admixture, which are error contaminated estimates of ancestry.

22
The Big Problem GIGI YIYI WIWI uiui AiAi

26
If we ignore the error in estimates… In regression, we assume all covariates are measured without error. In regression, we assume all covariates are measured without error. The admixture estimates violate this assumption and create the possibility of residual confounding and biased estimation. The admixture estimates violate this assumption and create the possibility of residual confounding and biased estimation. We are currently investigating multiple models to address these issues. We are currently investigating multiple models to address these issues.

27
Measurement errors Some knowledge about the distribution of the measurement error is required. Some knowledge about the distribution of the measurement error is required. There are several approaches to the measurement error problem: There are several approaches to the measurement error problem: 1) SIMEX 2) Multiple Imputation 3) Regression calibration Regression Calibration methods Regression Calibration methods 1) Regression calibration 2) Moment reconstruction method 3) Extended Regression calibration

29
What controls the measurement error for admixture? How many of markers will be used to estimate admixture? How many of markers will be used to estimate admixture? How informative the markers are with regard to ancestry? How informative the markers are with regard to ancestry? How many individuals within your study have pure ancestry from a founding population? How many individuals within your study have pure ancestry from a founding population?

30
What controls the measurement error for admixture? How variable is admixture/ancestry within your sample? How variable is admixture/ancestry within your sample?

31
Conclusion The research continues… The research continues…

Similar presentations

OK

Lecture 13: Linkage Analysis VI Date: 10/08/02 Complex models Pedigrees Elston-Stewart Algorithm Lander-Green Algorithm.

Lecture 13: Linkage Analysis VI Date: 10/08/02 Complex models Pedigrees Elston-Stewart Algorithm Lander-Green Algorithm.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Download ppt on indus valley civilization map Ppt on flowers for kindergarten Ppt on articles of association uk Ppt on mpeg audio compression and decompression algorithms Ppt on switching devices Ppt on gunn diode oscillators Decoding in reading ppt on ipad Ppt on obesity diet or exercise Ppt on self awareness institute Ppt on single phase and three phase dual converter/adapter