Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE 550 12/10/07.

Similar presentations


Presentation on theme: "Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE 550 12/10/07."— Presentation transcript:

1 Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE /10/07

2 Outline Objective Problem Formulation Results Analysis Conclusion

3 Objective Better understand OSA by comparing different parameters for the same design problem

4 Problem Formulation Parameters Chosen: P = Stress E = Youngs Modulus σ = allowable stress y = deflection Design Variables: b i and h i i = 1,5 (Total of 10 design variables) (Total of 21 constraints)

5 Problem Formulation cont. DOT results of optimum point

6 OSA Analysis Lambda values

7 OSA Analysis Matrix dimensions for OSA

8 Stress(P) = 50,000 N

9 Active to inactive p = 5.6*10^3 Inactive to Active p = 3.52*10^3 Minimum % 7%

10 Youngs Modulus = 2x10 7 Pa

11 Active to inactive p = 1.56*10^6 Inactive to Active p = 7.47*10^5 Minimum % 3.7%

12 Sigma = 14,000 N/cm 2

13 σ = 14,000 N/cm 2 Active to inactive p = 3.64*10^3 Inactive to Active p = 345 Minimum % 2.5%

14 Y(deflection) = 2.5 cm

15 Active to inactive p = 0.19 Inactive to Active p = Minimum % 3.69%

16 Conclusion OSA is limited in minimum delta p In this case inactive constraints are more sensitive

17 Questions?


Download ppt "Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE 550 12/10/07."

Similar presentations


Ads by Google