Download presentation

Presentation is loading. Please wait.

1
Chapter 4 Combinational Logic

2
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

3
**4.1 Introduction Logic circuits for digit systems maybe**

combinational or sequential. A combinational circuit consists of logic gates whose outputs at any time are determend from only the presence combinations of inputs A Sequential circuits contain memory elements with the logic gates the outputs are a function of the current inputs and the state of the memory elements the outputs also depend on past inputs. (chapter 5) 2

4
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

5
**Combinational circuits**

A combinational circuits 2 possible combinations of input values n Combinational circuits n input m output Combinatixnal variables variables xoxic Circuit Specific functions Adders, subtractors, comparators, decoders, encoders, and multiplexers 4

6
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

7
**4.3 Analysis Procedure A combinational circuit**

make sure that it is combinational not sequential No feedback path or memory elements. derive its Boolean functions (truth table) design verification

8
Example: 6

9
F2= AB+AC+BC T1= A+B+C T2= ABC T3= F2’. T1 F1= T3+T2 = F2’. T1 +ABC = (AB+AC+BC)’.(A+B+C) +ABC = (A’+B’)(A’+C’)(B’+C’).(A+B+C) +ABC = (A’B’+A’B’C’+B’C’+A’C’). (A+B+C) +ABC = AB’C’+A’B’C+A’B’C+ABC

10
The truth table 8

11
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

12
**4.4 Design Procedure The design procedure of combinational circuits**

From the scpecification of the circuit determine the required number of inputs and outputs. For each input and output variables assign a symbol Derive the truth table Derive the simplified Boolan functions for each output as a function of the input variables Draw the logic diagram and verify the correctness of the design 9

13
**Example: code conversion**

BCD to excess-3 code 11

14
The maps 12

15
**The simplified functions**

z = D' y = CD +C'D‘ x = B'C + B‘D+BC'D' w = A+BC+BD Another i mplementation z = D' y = CD +C'D' = CD + (C+D)' x = B'C + B'D+BC'D‘ = B'(C+D) +B(C+D)' w = A+B(C+D) 13

16
The logic diagram 14

17
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

18
**Half adder 4-5 Binary Adder-Subtractor**

0 + 0 = 0 ; = 1 ; = 1 ; = 10 two input variables: x, y two output variables: C (carry), S (sum) truth table S = x'y+xy‚ S=xÅy C = xy 15

19
17

20
**Full-Adder Z X 1 + Y + 0 + 1 C S 0 1 1 0 Z 1 X + Y + 0 + 1 C S 0 1 1 0**

A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C. For a carry-in (Z) of , it is the same as the half-adder: For a carry- in (Z) of 1: Z X 1 + Y + 0 + 1 C S 0 1 1 0 Z 1 X + Y + 0 + 1 C S 0 1 1 0

21
**the arithmetic sum of three input bits**

Full-Adder : the arithmetic sum of three input bits three input bits x, y: two significant bits z: the carry bit from the previous lower significant bit Two output bits: C, S 18

22
19

23
**S = x'y'z+x'yz'+ xy'z'+xyz C = xy + xz + yz S = zÅ (xÅy)**

C = xy + xz + yz S = zÅ (xÅy) = z'(xy'+x‘y)+z(xy'+x'y)' = z‘xy'+z'x'y+z(xy+x‘y') = xy'z'+x'yz'+xyz+x'y'z C = z(xy'+x'y)+xy = xy'z+x'yz+ xy 20

24
Binary adder Note: n bit adder requires n full adders 21

25
**Binary subtractor A-B = A+(2’s complement of B)**

4-bit Adder-subtractor using M as mode of operation M=0, A+B; M=1, A+B’+1 26

26
**Overflow The storage is limited Overfow cases :**

Overfow cases : 1.Add two positive numbers and obtain a negative number 2. Add two negative numbers and obtain a positive number V = 0, no overflow; V = 1, overflow Example: Note: XOR is used to detect overflow. 27

27
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

28
**4-6 Decimal Adder Add two BCD's 9 inputs: two BCD's and one carry-in**

9 inputs: two BCD's and one carry-in 5 outputs: one BCD and one carry-out A truth table with 2^9 entries the sum <= = 19 binary to BCD

29
**BCD Adder: The truth Table**

30
**In BCD modifications are needed if the sum > 9 **

Must add 6 (0110) in case: C = 1 K = 1 Z8z4=1 Z Z = 1 8 2 mo mo d Ification when C=1 we add 6: C = K +Z Z + Z Z

31
Block diagram

32
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

33
**4.7 Binary Multiplier Partial products**

–use AND operations with half adder. Note: A*B=1 only if A=B=1 Oherwise 0. fig. 4.15 Two-bit by two-bit binary multiplier.

34
**4-bit by 3-bit binary multiplier**

Fig. 4.16 Four-bit by three-bit binary multiplier. Digital Circuits

35
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

36
**4-9 Decoder A decoder is a combinational circute that converts n-input**

lines to 2^n output lines. We use here n-to-m decoder n a binary code of n bits = 2 distinct information n n input variables; up to 2 output lines only one output can be active (high) at any time

37
**An implementation Fig. 4.18 Three-to-eight-line decoder. 38**

Digital Circuits 38

38
**Demultiplexers a decoder with an enable input receive information**

a decoder with an enable input receive information in a single line and transmits it in one of 2 possible output lines n Fig. 4.19 Two-to-four-line decoder with enable input

39
**Decoder Examples D0 = m0 = A2’A1’A0’ D1= m1 = A2’A1’A0 …etc**

3-to-8-Line Decoder: example: Binary-to-octal conversion. D0 = m0 = A2’A1’A0’ D1= m1 = A2’A1’A0 …etc

40
**Expansion two 3-to-8 decoder: a 4-to-16 deocder a 5-to-32 decoder?**

two 3-to-8 decoder: a 4-to-16 deocder Fig. 4.20 4 16 decoder constructed with two 3 x 8 decoders a 5-to-32 decoder?

41
**Decoder Expansion - Example 2**

Construct a 5-to-32-line decoder using four 3-8-line decoders with enable inputs and a 2-to-4-line decoder. A0 A1 A2 3-8-line Decoder E D0 – D7 D8 – D15 D16 – D23 D24 – D31 2-4-line Decoder A3 A4

42
**Combination Logic Implementation**

each output = a minterm use a decoder and an external OR gate to implement any Boolean function of n input variables A full-adder S(x,y,z)=S(1,2,4,7) C(x,y,z)= C(x,y,z)= S S (3,5,6,7) (3,5,6,7) Fig. 4.21 Implementation of a full adder with 1 decoder

43
**two possible approaches using decoder**

OR(minterms of F): k inputs NOR(minterms of F'): 2 - k inputs n In general, it is not a practical implementation

44
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

45
**4.10 Encoders The inverse function of decoder a decoder z = D + D + D**

a decoder z = D + D + D + D The encoder can be implemented y = D + D + D + D with three OR gates. x = D + D + D + D

46
**An implementation limitations illegal input: e.g. D =D x1**

limitations illegal input: e.g. D =D x1 3 6 The output = 111 (¹3 and ¹6)

47
**Priority Encoder resolve the ambiguity of illegal inputs**

only one of the input is encoded D has the highest priority 3 D has the lowest priority X: don't-care conditions V: valid output indicator

48
**■ The maps for simplifying outputs x and y**

fig. 4.22 Maps for a priority encoder

49
**■ Implementation of priority**

x = Fig. 4.23 D + D 2 3 Four-input priority encoder y= D + D D V = D + D + D + D

50
Outline: 4.1 Introduction. 4.2 Combinational Circuits. 4.3 Analysis Procedure. 4.4 Design Procedure. 4.5 Binary Adder-subtractor. 4.6 Decimal Adder. 4.7 Binary Multiplier. 4.9 Decoders Encoders Multiplexers.

51
**4.11 Multiplexers select binary information from one of many input**

lines and direct it to a single output line 2 input lines, n selection lines and one output line n e.g.: 2-to-1-line multiplexer Fig. 4.24 Two-to-one-line multiplexer

52
**4-to-1-line multiplexer**

Fig. 4.25 Four-to-one-line multiplexer

53
**Note n-to- 2 decoder add the 2 input lines to each AND gate**

add the 2 input lines to each AND gate n OR(all AND gates) an enable input (an option)

54
Fig. 4.26 Quadruple two-to-one-line multiplexer

55
**Boolean function implementation**

MUX: a decoders an OR gate n 2 -to-1 MUX can implement any Boolean function of n input variable a better solution: implement any Boolean function of n+1 input variable n of these variables: the selection lines the remaining variable: the inputs

56
**an example: F(A,B,C) = S(1,2,6,7)**

an example: F(A,B,C) = S(1,2,6,7) Fig. 4.27 Implementing a Boolean function with a multiplexer

57
**Procedure: Assign an ordering sequence of the input variable**

Assign an ordering sequence of the input variable the rightmost variable (D) will be used for the input lines assign the remaining n-1 variables to the selection Lines with construct the truth table lines w.r.t. their corresponding sequ consider a pair of consecutive minterms starting from m determine the input lines

58
**Example: F(A, B, C, D) = S(1, 3, 4, 11, 12, 13, 14, 15) Fig. 4.28**

Implementing a four-input function with a multiplexer

59
**Three-state gates A multiplexer can be constructed with three-state**

A multiplexer can be constructed with three-state gates Output state: 0, 1, and high-impedance (open ckts) Fig. 4.29 Graphic symbol for a three-state buffer

60
**Example: Four-to-one-line multiplexer**

Fig. 4.30 Multiplexer with three-state gates

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google