Download presentation

Presentation is loading. Please wait.

Published byFrancisco Deeds Modified over 3 years ago

1
Two-locus systems

2
Scheme of genotypes genotype Two-locus genotypes Multilocus genotypes genotype

3
Two-locus two allele population Gamete p 1 p 2 p 3 p 4 Independent combination of randomly chosen parental gametes Next generation on zygote level

4
Table gametes from genotypes I (1-r) –no cross-over(r) – cross-over Zygote gamete 0.5(1-r) Type zygote- one locus is homozygotes 0.5(1-r)0.5(r) Zygote (AB,Ab) have gamete (AB) with frequency 0.5(1-r)+0.5r=0.5

5
Table gametes from genotypes II (1-r) –no cross-over (r) – cross-over 0.5(1-r) 0.5(r) Zygote gamete Type zygote- both loci is heterozygotes Zygote (AB,ab) have gamete (AB) with frequency 0.5(1-r)

6
gamete Position effect

7
Table zygote productions AB: p 1 ’ =p 1 2 +p 1 p 2 +p 1 p 3 +(1-r)p 1 p 4 +rp 2 p 3 Evolutionary equation for genotype AB

8
p 1 ’ =p 1 2 +p 1 p 2 +p 1 p 3 +(1-r)p 1 p 4 +rp 2 p 3 p 2 ’ =p 2 2 +p 1 p 2 +p 2 p 4 +rp 1 p 4 +(1-r)p 2 p 3 p 3 ’ =p 3 2 +p 3 p 4 +p 1 p 3 +rp 1 p 4 +(1-r)p 2 p 3 p 4 ’ =p 4 2 +p 3 p 4 +p 2 p 4 +(1-r)p 1 p 4 +rp 2 p 3 r is probabilities of cross-over (coefficient of recombination). Usually 0 r 0.5. If r=0.5 then loci are called unlinked (or independent). If r=0 then population transform to one loci population with four alleles. AB Ab aB ab p 1 p 2 p 3 p 4

9
Measure of disequilibria D= p 1 p 4 -p 2 p 3

10
p 1 ’ =p 1 - rD ; p 2 ’ =p 2 +rD; p 3 ’ =p 3 + rD; p 4 ’ =p 4 - rD. Gene Conservation Low p 1 ’ + p 2 ’ = p 1 + p 2 =p(A); p 1 ’ + p 3 ’ = p 1 + p 3 =p(B) AB Ab aB ab p 1 p 2 p 3 p 4 p 1 +p 2 =p(A) p 1 +p 3 =p(B)

11
Two-locus two allele population. Equilibria. p 1 =p 1 - rD ; p 2 =p 2 +rD; p 3 =p 3 + rD; p 4 =p 4 - rD. Measure of disequilibria D= p 1 p 4 -p 2 p 3 D=0; p 1 p 4 = p 2 p 3

12
p 1 = p(A) p(B); p 2 = p(A) p(b); p 3 = p(a) p(B); p 4 = p(a) p(b). In equilibria point the genes are statistically independence. But the genes are dependent physically, because are in pairs on chromosome Measure of disequilibria D= p 1 p 4 -p 2 p 3

13
Convergence to equilibrium D ’ =p 1 ’ p 4 ’ - p 2 ’ p 3 ’ ; p 1 ’ =p 1 - rD ; p 2 ’ =p 2 +rD; p 3 ’ =p 3 + rD; p 4 ’ =p 4 - rD. D ’ =(p 1 - rD )(p 4 - rD)-(p 2 +rD)(p 3 + rD) D’=D’= p 1 p 4 - p 2 p 3 -rD(p 1 +p 2 +p 3 +p 4 )+(rD) 2 -(rD) 2 D ’ =D-rD=(1-r)D; D (n) =(0.5) n D (0) ; Maximal speed convergence to equilibrium for r=0.5 D (n) =(1-r) n D (0) ;

14
p 1 = p(A) p(B); p 2 = p(A) p(b); p 3 = p(a) p(B); p 4 = p(a) p(b). Gene Conservation Low p 1 ’ + p 2 ’ = p 1 + p 2 =p(A); p 1 ’ + p 3 ’ = p 1 + p 3 =p(B) Infinite set of equilibrium points

15
p 1 ’ =p 1 2 +p 1 p 2 +p 1 p 3 +(1-r)p 1 p 4 +rp 2 p 3 p 2 ’ =p 2 2 +p 1 p 2 +p 2 p 4 +rp 1 p 4 +(1-r)p 2 p 3 p 3 ’ =p 3 2 +p 3 p 4 +p 1 p 3 +rp 1 p 4 +(1-r)p 2 p 3 p 4 ’ =p 4 2 +p 3 p 4 +p 2 p 4 +(1-r)p 1 p 4 +rp 2 p 3 r=0 p 1 ’ =p 1 2 +p 1 p 2 +p 1 p 3 +p 1 p 4 = p 1 p 2 ’ =p 2 2 +p 1 p 2 +p 2 p 4 +p 2 p 3 = p 2 p 3 ’ =p 3 2 +p 3 p 4 +p 1 p 3 +p 2 p 3 = p 3 p 4 ’ =p 4 2 +p 3 p 4 +p 2 p 4 +p 1 p 4 = p 4 p 1 ’ =p 1 - rD ; p 2 ’ =p 2 +rD; p 3 ’ =p 3 + rD; p 4 ’ =p 4 - rD.

16
p 1 ’ =p 1 2 +p 1 p 2 +p 1 p 3 +(1-r)p 1 p 4 +rp 2 p 3 p 2 ’ =p 2 2 +p 1 p 2 +p 2 p 4 +rp 1 p 4 +(1-r)p 2 p 3 p 3 ’ =p 3 2 +p 3 p 4 +p 1 p 3 +rp 1 p 4 +(1-r)p 2 p 3 p 4 ’ =p 4 2 +p 3 p 4 +p 2 p 4 +(1-r)p 1 p 4 +rp 2 p 3 r=1 p 1 ’ =p 1 2 +p 1 p 2 +p 1 p 3 +p 2 p 3 = (p 1 +p 2 )(p 1 +p 3 ) = p(A)p(B) p 2 ’ =p 2 2 +p 1 p 2 +p 2 p 4 +p 1 p 4 = (p 1 +p 2 )(p 2 +p 4 ) = p(A)p(b) p 3 ’ =p 3 2 +p 3 p 4 +p 1 p 3 +p 1 p 4 = (p 3 +p 4 )(p 1 +p 3 ) = p(a)p(B) p 4 ’ =p 4 2 +p 3 p 4 +p 2 p 4 +p 2 p 3 = (p 3 +p 4 )(p 2 +p 4 ) = p(a)p(b) p 1 ’ =p 1 - rD ; p 2 ’ =p 2 +rD; p 3 ’ =p 3 + rD; p 4 ’ =p 4 - rD. D (n) =(1-r) n D (0) ;

17
simulation

18
Multilocus multiallele population Three loci

20
Equilibrium point Equilibrium point=limiting point of trajectories

21
General case

22
M loci and L alleles in each locus

23
Problem: definition of the linkage distribution. Nonrandom crossovers.

25
definition of the linkage distribution.

26
Equilibrium point for multilocus population

27
Polyploids systems

28
4-ploids2-ploids (diploids) Chromatid dabbling Four gamete produced

29
Problem: definition of the coefficients.

30
Polyploids systems

Similar presentations

OK

Symbols to Know for Crosses a/a – a is the allele and / represents the two chromatids – there are two alleles for a diploid organism a b/a b – two different.

Symbols to Know for Crosses a/a – a is the allele and / represents the two chromatids – there are two alleles for a diploid organism a b/a b – two different.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on summary writing exercises Ppt on techniques to secure data Ppt on production theory in economics Ppt on vegetarian and non vegetarian couples Ppt on rocks soil and minerals Ppt on flags of the world Ppt on event driven programming pdf Ppt on hotel management system Ppt on world environment day discounts Ppt on rational numbers for class 9