Download presentation

Presentation is loading. Please wait.

1
**Proving Triangles Congruent**

Part 2

2
AAS Theorem If two angles and one of the non-included sides in one triangle are congruent to two angles and one of the non-included sides in another triangle, then the triangles are congruent.

3
**AAS Looks Like… A: ÐK @ ÐM A: ÐKJL @ ÐMJL S: JL @ JL DJKL @ DJML**

G F A: ÐM A: ÐMJL S: JL DJML J B C D A: ÐD A: ÐG S: DF ACB DFG M K L

4
AAS vs. ASA AAS ASA

5
**Parts of a Right Triangle**

hypotenuse legs

6
**HL Theorem RIGHT TRIANGLES ONLY!**

If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and leg of another right triangle, then the triangles are congruent.

7
**HL Looks Like… Right Ð: ÐTVW & ÐXVW Right Ð: ÐM & ÐQ H: TW @ XW**

N T X V Right Ð: ÐTVW & ÐXVW H: XW L: WV Right Ð: ÐM & ÐQ H: RS L: QS P R NMP RQS WTV WXV Q S

8
**There’s no such thing as AAA**

AAA Congruence: These two equiangular triangles have all the same angles… but they are not the same size!

9
Recap: There are 5 ways to prove that triangles are congruent: SSS SAS ASA AAS HL

10
**AAS SAS DMLN @ DHJK DABD @ DCBD D A: ÐL @ ÐJ A: ÐM @ ÐH S: LN @ JK A C**

Examples D M N L A: ÐJ A: ÐH S: JK H A C B B is the midpoint of AC J S: BC A: ÐCBD S: DB AAS K SAS DHJK DCBD

11
**HL DABD @ DCBD ASA DBEA @ DDEC B A C D A: ÐA @ ÐC S: AE @ CE**

Examples B C A C B E D D A DB ^ AC CD HL A: ÐC S: CE A: ÐDEC DCBD Right Angles: ÐABD & ÐCBD H: CD L: BD ASA DDEC

12
**We cannot conclude whether the triangle are congruent.**

Examples W Z B A C X V D A: ÐYXZ S: YZ Y B is the midpoint of AC SSS DDCB Not Enough! We cannot conclude whether the triangle are congruent. S: CB S: BD S: CD

Similar presentations

Presentation is loading. Please wait....

OK

4.3: Analyzing Triangle Congruence

4.3: Analyzing Triangle Congruence

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt online ticket Ppt on greenhouse effect and global warming Ppt on young uncle comes to town Ppt on ufo and aliens in california Ppt on trends in retailing Ppt on field study 3 Ppt on depth first search vs breadth Training ppt on spc Ppt on amplitude shift keying transmitter Ppt online open school