Download presentation

Presentation is loading. Please wait.

Published byDarwin Holtby Modified over 2 years ago

1
1. (x) Ax > ( ∃ x) Bx 2. (x) ~Bx / ( ∃ x) ~Ax CQ of conclusion: ~(x) Ax CQ of line 2: ~ ( ∃ x) Bx 3. ~( ∃ x) Bx 4. ~(x) Ax

2
1. ( ∃ x) ~Ax v ( ∃ x) ~Bx 2. (x) Bx / ~(x) Ax 3. ~( ∃ x) ~BxCQ 2 4. ( ∃ x) ~Axcm, ds 1,3 5. ~ (x) Ax CQ 4

3
5) If all philosophers are either ethicists or metaphysicians, then there are no logicians. But Russell’s a logician, so some philosophers are not metaphysicians. 1. (x) (Px > (Ex v Mx)) > ~( ∃ x ) Lx 2. L r / ( ∃ x) (Px. ~Mx) 3. ( ∃ x) Lx EG 2 4. ~~( ∃ x) Lx DN 3 5. ~(x)(Px > (Ex v Mx))MT 4,1 6. ( ∃ x)~(Px > (Ex v Mx))CQ 5 7. ~(Pq > (Eq v Mq))EI 6 8. ~(~Pq v (Eq v Mq)IMP 7 9. Pq. ~(Eq v Mq)DM Pq. (~Eq. ~Mq) DM Pq. ~ MqCM, AS,SM ( ∃ x) (Px. ~Mx)EG 11

4
7) All utilitarians are ethicists and all idealists are metaphysicians. Therefore, since it is not true that some ethicists are metaphysicians, it is not the case that some utilitarians are idealists. 1.(x) (Ux > Ex). (x) (Ix > Mx) 2. ~( ∃ x) (Ex. Mx)/ ~( ∃ x) (Ux. Ix) 3. (x) ~(Ex. Mx)CQ 2 4. ~(Ex. Mx) UI 3 5. Ux > ExSM, UI 1 6. Ix > MxCM, SM, UI 1 7. ~Ex v ~ MxDM 4 8. Ex > ~Mx IMP 7 9. Ux > ~Mx HS 5, (x) ~ (Ux. Ix)CM, DM, UG ~( ∃ x) (Ux. Ix)CQ Mx > ~Ux TRAN Ix > ~Ux HS 10, ~Ix v ~UxIMP 11

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google