Download presentation

1
**Lesson 10.2: Arithmetic Sequences & Series**

Algebraic formula specific terms Recursion or Recursive formulas Arithmetic means Series Sum of finite arithmetic sequences

2
**Arithmetic Sequence: a sequence whose consecutive terms **

have a common difference, d. d = 4 1. 5, 9, 13, 17, _____ d = 2. 2, -5, -12, -19, _____ The formula for an can be written given a1 and d: an = a1 + (n – 1)d = a1 + dn – d = dn + (a1 – d) simplified form an = dn + c (where c = a1 – d) For 1: a1 = 5, d = 4, so an = 5 + (n – 1)4 = For 2: a1 = 2, d = -7, so an =

3
**Write the explicit formula for an**

an = a1 + (n – 1)d an = dn + c (where c = a1 – d) Write the explicit formula for an 3. a3 = 63, d = 4 a3 = dn + c so, an = 4n + 51 63 = 4*3 + c 51 = c p675 #30. a5 = 190, a10 = 115 a10 = a5 + (10 – 5)d a5 = dn + c 190 = -15*5 + c 265 = c 115 = d -75 = 5d -15 = d find d so, an = -15n + 265

4
**Write the first 5 terms of the arithmetic sequence.**

(need the formula or a1 & d) an = a1 + (n – 1)d an = dn + c (where c = a1 – d) 1. an = 4n + 51 Have formula, so use it! a1= 4(1) + 51 = 55 a2 = 4(2) + 51 = 59 etc. Sequence: p675 #39. a8 = 26, a12 = 42 No formula, so find a1 & d a1 = -2 a2 = a1 + d = = 2 a3 = a2 + d = a4 = a3 + d = a5 = a4 + d = a12 = a8 + (12 – 8)d a8 = a1 + (n – 1)d find d find a1 Sequence:

5
**A recursion formula defines an in terms of previous term(s).**

For arithmetic sequences, an = an-1 + d (must also provide a term in the sequence). d = 4 1. 5, 9, 13, 17, _____ 21 a1 = 5, an = an-1 + 4 2. 2, -5, -12, -19, _____ - 26 d = -7 3. a3 = 63, d = 4 p674 #30. a5 = 190, a10 = 115 d = -15

6
**1. Find the 4 arithmetic means between 72 and 52.**

Arithmetic means are terms between any nonconsecutive terms in an arithmetic sequence. an = a1 + (n – 1)d an = dn + c (where c = a1 – d) Need d. 1. Find the 4 arithmetic means between 72 and 52. 72, , , , , 52 a1 a6 = a1 + (n – 1)d a6 52 = 72 + (5)d -20 = 5d -4 = d So, 72, 68, 64, 60, 56, 52 2. Find the 3 arithmetic means between 21 and 45. d = 6, so 21, 27, 33, 39, 45

7
**Arithmetic series: the sum of a finite arithmetic sequence.**

The sum of a finite arithmetic sequence is or See derivation on p670. note: an = a1 + (n – 1)d Examples: 1. Find the sum of the 1st 20 even integers beginning at 8. Have n = , a1 = , d = , so use 2nd formula. 2. Find Formula looks like an arithmetic series, expand a few terms to be sure: 2*3 + 1 = 7, 2*4 + 1 = 9, 2*5 + 1 = 11, … be careful! Can easily determine n, a1, & an, so use 1st formula. n = a1 = [k = 3] a108 = [k = 110]

8
Homework: Arithmetic Sequences: pp # 2, 5, 7, 20, 24, 34, 38, 62, 64 Arithmetic Series: p675 #42, 44, 48, 50, 54, 66, 70, 72

Similar presentations

OK

1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.

1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google